Learning to Assimilate in Chaotic Dynamical Systems
- URL: http://arxiv.org/abs/2111.01058v1
- Date: Mon, 1 Nov 2021 16:07:34 GMT
- Title: Learning to Assimilate in Chaotic Dynamical Systems
- Authors: Michael McCabe and Jed Brown
- Abstract summary: We introduce amortized assimilation, a framework for learning to assimilate in dynamical systems from sequences of noisy observations.
We motivate the framework by extending powerful results from self-supervised denoising to the dynamical systems setting through the use of differentiable simulation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The accuracy of simulation-based forecasting in chaotic systems is heavily
dependent on high-quality estimates of the system state at the time the
forecast is initialized. Data assimilation methods are used to infer these
initial conditions by systematically combining noisy, incomplete observations
and numerical models of system dynamics to produce effective estimation
schemes. We introduce amortized assimilation, a framework for learning to
assimilate in dynamical systems from sequences of noisy observations with no
need for ground truth data. We motivate the framework by extending powerful
results from self-supervised denoising to the dynamical systems setting through
the use of differentiable simulation. Experimental results across several
benchmark systems highlight the improved effectiveness of our approach over
widely-used data assimilation methods.
Related papers
- The Significance of Latent Data Divergence in Predicting System Degradation [1.2058600649065616]
Condition-Based Maintenance is pivotal in enabling the early detection of potential failures in engineering systems.
We introduce a novel methodology grounded in the analysis of statistical similarity within latent data from system components.
We infer the similarity between systems by evaluating the divergence of these priors, offering a nuanced understanding of individual system behaviors.
arXiv Detail & Related papers (2024-06-13T11:41:20Z) - eXponential FAmily Dynamical Systems (XFADS): Large-scale nonlinear Gaussian state-space modeling [9.52474299688276]
We introduce a low-rank structured variational autoencoder framework for nonlinear state-space graphical models.
We show that our approach consistently demonstrates the ability to learn a more predictive generative model.
arXiv Detail & Related papers (2024-03-03T02:19:49Z) - Benchmarking sparse system identification with low-dimensional chaos [1.5849413067450229]
We systematically benchmark sparse regression variants by utilizing the dysts standardized database of chaotic systems.
We demonstrate how this open-source tool can be used to quantitatively compare different methods of system identification.
In all cases, we used ensembling to improve the noise robustness of SINDy and provide statistical comparisons.
arXiv Detail & Related papers (2023-02-04T18:49:52Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
We investigate and compare the performance of several local and global smoothing techniques to a priori denoise the state measurements.
We show that, in general, global methods, which use the entire measurement data set, outperform local methods, which employ a neighboring data subset around a local point.
arXiv Detail & Related papers (2022-01-29T23:31:25Z) - Structure-Preserving Learning Using Gaussian Processes and Variational
Integrators [62.31425348954686]
We propose the combination of a variational integrator for the nominal dynamics of a mechanical system and learning residual dynamics with Gaussian process regression.
We extend our approach to systems with known kinematic constraints and provide formal bounds on the prediction uncertainty.
arXiv Detail & Related papers (2021-12-10T11:09:29Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Data Assimilation Networks [1.5545257664210517]
Data assimilation aims at forecasting the state of a dynamical system by combining a mathematical representation of the system with noisy observations.
We propose a fully data driven deep learning architecture generalizing recurrent Elman networks and data assimilation algorithms.
Our architecture achieves comparable performance to EnKF on both the analysis and the propagation of probability density functions of the system state at a given time without using any explicit regularization technique.
arXiv Detail & Related papers (2020-10-19T17:35:36Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - Bridging the Gap: Machine Learning to Resolve Improperly Modeled
Dynamics [4.940323406667406]
We present a data-driven modeling strategy to overcome improperly modeled dynamics for systems exhibiting complex-temporal behaviors.
We propose a Deep Learning framework to resolve the differences between the true dynamics of the system and the dynamics given by a model of the system that is either inaccurately or inadequately described.
arXiv Detail & Related papers (2020-08-23T04:57:02Z) - Active Learning for Nonlinear System Identification with Guarantees [102.43355665393067]
We study a class of nonlinear dynamical systems whose state transitions depend linearly on a known feature embedding of state-action pairs.
We propose an active learning approach that achieves this by repeating three steps: trajectory planning, trajectory tracking, and re-estimation of the system from all available data.
We show that our method estimates nonlinear dynamical systems at a parametric rate, similar to the statistical rate of standard linear regression.
arXiv Detail & Related papers (2020-06-18T04:54:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.