論文の概要: NISQ: Error Correction, Mitigation, and Noise Simulation
- arxiv url: http://arxiv.org/abs/2111.02345v2
- Date: Thu, 4 Aug 2022 16:57:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-09 06:51:06.448795
- Title: NISQ: Error Correction, Mitigation, and Noise Simulation
- Title(参考訳): NISQ:誤り訂正・緩和・騒音シミュレーション
- Authors: Ningping Cao, Junan Lin, David Kribs, Yiu-Tung Poon, Bei Zeng and
Raymond Laflamme
- Abstract要約: 誤り訂正符号は、ノイズの多い通信チャネルの誤りを修正するために発明された。
量子エラー訂正(QEC)は、情報伝達、量子シミュレーション/計算、フォールトトレランスなど幅広い用途を持つ。
本研究は,QEM(Quantum Error Mitigation)の課題について,いくつかの観点から検討する。
- 参考スコア(独自算出の注目度): 0.39146761527401414
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Error-correcting codes were invented to correct errors on noisy communication
channels. Quantum error correction (QEC), however, may have a wider range of
uses, including information transmission, quantum simulation/computation, and
fault-tolerance. These invite us to rethink QEC, in particular, about the role
that quantum physics plays in terms of encoding and decoding. The fact that
many quantum algorithms, especially near-term hybrid quantum-classical
algorithms, only use limited types of local measurements on quantum states,
leads to various new techniques called Quantum Error Mitigation (QEM). This
work examines the task of QEM from several perspectives. Using some intuitions
built upon classical and quantum communication scenarios, we clarify some
fundamental distinctions between QEC and QEM. We then discuss the implications
of noise invertibility for QEM, and give an explicit construction called
Drazin-inverse for non-invertible noise, which is trace preserving while the
commonly-used Moore-Penrose pseudoinverse may not be. Finally, we study the
consequences of having an imperfect knowledge about the noise, and derive
conditions when noise can be reduced using QEM.
- Abstract(参考訳): 誤り訂正符号はノイズの多い通信チャネルの誤りを修正するために発明された。
しかし、qec(quantum error correction)は、情報伝達、量子シミュレーション/計算、フォールトトレランスなど、幅広い用途を持つ可能性がある。
これらはQEC、特に量子物理学がエンコーディングや復号化において果たす役割について再考することを呼び起こします。
多くの量子アルゴリズム、特に短期的なハイブリッド量子古典アルゴリズムが、量子状態上の限られた種類の局所的測定のみを使用するという事実は、量子エラー緩和(qem)と呼ばれる様々な新しい技術をもたらす。
本研究は,様々な観点からQEMの課題を考察する。
古典的および量子的コミュニケーションシナリオに基づくいくつかの直観を用いて、qecとqemの基本的な違いを明らかにする。
次に、qem の雑音可逆性の意味を議論し、非可逆雑音に対する drazin-inverse と呼ばれる明示的な構成を与える。
最後に,雑音に関する不完全な知識を持つことによる結果について検討し,qemを用いて雑音を低減できる条件を導出する。
関連論文リスト
- Unconditionally decoherence-free quantum error mitigation by density matrix vectorization [4.2630430280861376]
密度行列のベクトル化に基づく量子誤差緩和の新しいパラダイムを提案する。
提案手法は,情報符号化の方法を直接変更し,ノイズのない純状態に雑音の多い量子状態の密度行列をマッピングする。
我々のプロトコルは、ノイズモデルに関する知識、ノイズ強度を調整する能力、複雑な制御ユニタリのためのアンシラキュービットを必要としない。
論文 参考訳(メタデータ) (2024-05-13T09:55:05Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Noise-robust ground state energy estimates from deep quantum circuits [0.0]
量子アルゴリズムにおいて、基礎となるエネルギー推定が不整合ノイズを明示的に除去する方法を示す。
我々はIBM Quantumハードウェア上で量子磁性のモデルとしてQCMを実装した。
QCMはVQEが完全に失敗する極めて高いエラー堅牢性を維持している。
論文 参考訳(メタデータ) (2022-11-16T09:12:55Z) - Quantum Error Correction: Noise-adapted Techniques and Applications [2.122752621320654]
量子誤差補正の理論は、そのようなノイズが量子状態に与える影響を緩和するスキームを提供する。
我々は、ノイズ適応QECの領域における最近の理論的進歩に注目し、いくつかの重要なオープンな疑問を浮き彫りにする。
本稿では,誤差耐性量子計算が可能な物理ノイズ閾値を定量的に推定する量子フォールトトレランスの理論を概説した。
論文 参考訳(メタデータ) (2022-07-31T05:23:50Z) - Quantum Noise Sensing by generating Fake Noise [5.8010446129208155]
本稿では,現実的な量子デバイスにおけるノイズを特徴付ける枠組みを提案する。
鍵となるアイデアは、本物(知覚される)と偽(生成される)とを区別できない方法で、それを模倣することによって、ノイズについて学ぶことである。
Pauli チャネルのベンチマークケースに適用すると,空間的・時間的相関ノイズであっても,SuperQGAN プロトコルは関連する誤り率を学習できることがわかった。
論文 参考訳(メタデータ) (2021-07-19T09:42:37Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
量子コンピューティングの標準的なアプローチは、古典的にシミュレート可能なフォールトトレラントな演算セットを促進するという考え方に基づいている。
量子回路の古典的準確率シミュレーションをどのように促進するかを示す。
論文 参考訳(メタデータ) (2021-03-12T20:58:41Z) - Simulating noisy variational quantum eigensolver with local noise models [4.581041382009666]
変分量子固有解法 (VQE) は, 近時雑音中規模量子コンピュータにおいて量子優位性を示すことを約束している。
VQEの中心的な問題はノイズ、特に物理ノイズが現実的な量子コンピュータに与える影響である。
本稿では,様々な局所雑音モデルを用いた数値シミュレーションにより,VQEアルゴリズムの雑音効果を系統的に検討する。
論文 参考訳(メタデータ) (2020-10-28T08:51:59Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
ノイズチャネルの多くの用途でメッセージを確実に送信するために、回路をエンコードしてデコードする。
すべての量子チャネル$T$とすべての$eps>0$に対して、以下に示すゲートエラー確率のしきい値$p(epsilon,T)$が存在し、$C-epsilon$より大きいレートはフォールトトレラント的に達成可能である。
我々の結果は、遠方の量子コンピュータが高レベルのノイズの下で通信する必要があるような、大きな距離での通信やオンチップでの通信に関係している。
論文 参考訳(メタデータ) (2020-09-15T15:10:50Z) - On the learnability of quantum neural networks [132.1981461292324]
本稿では,量子ニューラルネットワーク(QNN)の学習可能性について考察する。
また,概念をQNNで効率的に学習することができれば,ゲートノイズがあってもQNNで効果的に学習できることを示す。
論文 参考訳(メタデータ) (2020-07-24T06:34:34Z) - Using Quantum Metrological Bounds in Quantum Error Correction: A Simple
Proof of the Approximate Eastin-Knill Theorem [77.34726150561087]
本稿では、量子誤り訂正符号の品質と、論理ゲートの普遍的な集合を達成する能力とを結びつける、近似したイージン・クニル定理の証明を示す。
我々の導出は、一般的な量子気象プロトコルにおける量子フィッシャー情報に強力な境界を用いる。
論文 参考訳(メタデータ) (2020-04-24T17:58:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。