論文の概要: Skin Cancer Classification using Inception Network and Transfer Learning
- arxiv url: http://arxiv.org/abs/2111.02402v1
- Date: Wed, 3 Nov 2021 01:50:52 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-06 04:38:39.463424
- Title: Skin Cancer Classification using Inception Network and Transfer Learning
- Title(参考訳): インセプションネットワークと転写学習を用いた皮膚癌の分類
- Authors: Priscilla Benedetti and Damiano Perri and Marco Simonetti and Osvaldo
Gervasi and Gianluca Reali and Mauro Femminella
- Abstract要約: 本研究では,7種類の不均衡皮膚病変からなるHAM10000データセットから皮膚内視鏡像を分類する手法を提案する。
提案手法の精度と性能を評価し,拡張可能性を示す。
- 参考スコア(独自算出の注目度): 2.7402733069181
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical data classification is typically a challenging task due to imbalance
between classes. In this paper, we propose an approach to classify
dermatoscopic images from HAM10000 (Human Against Machine with 10000 training
images) dataset, consisting of seven imbalanced types of skin lesions, with
good precision and low resources requirements. Classification is done by using
a pretrained convolutional neural network. We evaluate the accuracy and
performance of the proposal and illustrate possible extensions.
- Abstract(参考訳): 医学データ分類は通常、クラス間の不均衡のために難しい課題である。
本稿では,HAM10000 (Human Against Machine with 10000 training images) データセットから皮膚病変を7種類の不均衡で高精度かつ低リソースで分類する手法を提案する。
分類は事前訓練された畳み込みニューラルネットワークを用いて行われる。
提案の精度と性能を評価し,拡張の可能性を示す。
関連論文リスト
- An analysis of data variation and bias in image-based dermatological datasets for machine learning classification [2.039829968340841]
臨床皮膚学では、分類モデルはRGB画像のみを入力として、患者の皮膚の悪性病変を検出することができる。
学習に基づくほとんどの手法では、トレーニングにおいて皮膚科のデータセットから取得したデータを用いており、これは金の基準によって大きく検証されている。
本研究の目的は,皮膚内視鏡検査と臨床検査のギャップを評価し,データセットの変動がトレーニングに与える影響を理解することである。
論文 参考訳(メタデータ) (2025-01-15T17:18:46Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
少ないラベル付きデータでよく一般化する皮膚病変に対する数発のショットベースアプローチを提案する。
提案手法は,アテンションモジュールや分類ネットワークとして機能するセグメンテーションネットワークの融合を含む。
論文 参考訳(メタデータ) (2023-10-11T05:49:47Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
ディープラーニングを医療分野に適用する上で最大の課題は、トレーニングデータの提供である。
データ拡張は、限られたデータセットに直面した時に機械学習で使用される典型的な方法論である。
本研究は, 新型コロナウイルスの胸部X線画像セットを限定して, StyleGAN2-ADAモデルを用いて訓練するものである。
論文 参考訳(メタデータ) (2023-04-18T15:39:58Z) - Application of Transfer Learning and Ensemble Learning in Image-level
Classification for Breast Histopathology [9.037868656840736]
CAD(Computer-Aided Diagnosis)では、従来の分類モデルでは、主に1つのネットワークを使って特徴を抽出する。
本稿では良性病変と悪性病変のバイナリ分類のための画像レベルラベルに基づく深層アンサンブルモデルを提案する。
結果: アンサンブルネットワークモデルにおいて、画像レベルのバイナリ分類は9,8.90%の精度を達成する。
論文 参考訳(メタデータ) (2022-04-18T13:31:53Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
本稿では,エンド・ツー・エンドのMB腫瘍分類を提案し,様々な入力サイズとネットワーク次元の一致した移動学習を提案する。
161ケースのデータセットを用いて、より大規模な入力解像度を持つ事前学習されたEfficientNetが、大幅な性能改善をもたらすことを実証した。
論文 参考訳(メタデータ) (2021-09-10T13:07:11Z) - Transfer Learning with Ensembles of Deep Neural Networks for Skin Cancer
Classification in Imbalanced Data Sets [0.6802401545890961]
医療画像から皮膚癌を正確に分類するための機械学習技術が報告されている。
多くのテクニックは、訓練済みの畳み込みニューラルネットワーク(CNN)に基づいており、限られたトレーニングデータに基づいてモデルをトレーニングすることができる。
本稿では,複数のcnnモデルが事前学習され,一部は手元のデータのみにトレーニングされ,患者情報(メタデータ)はメタリーナーを用いて結合される,新しいアンサンブルベースのcnnアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-03-22T06:04:45Z) - Analysis of skin lesion images with deep learning [0.0]
内視鏡画像の分類における美術の現状を評価します。
ImageNetデータセットに事前トレーニングされた様々なディープニューラルネットワークアーキテクチャは、組み合わせたトレーニングデータセットに適合する。
皮膚病変の8クラスの検出のためのこれらのモデルの性能と適用性を検討する。
論文 参考訳(メタデータ) (2021-01-11T10:58:36Z) - Domain Generalization for Medical Imaging Classification with
Linear-Dependency Regularization [59.5104563755095]
本稿では,医用画像分類分野におけるディープニューラルネットワークの一般化能力向上のための,シンプルだが効果的なアプローチを提案する。
医用画像の領域変数がある程度コンパクトであることに感銘を受けて,変分符号化による代表的特徴空間の学習を提案する。
論文 参考訳(メタデータ) (2020-09-27T12:30:30Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
胸部X線画像から胸部疾患を自動分類するためのCAN(Cross-Attention Networks)を提案する。
また,クロスエントロピー損失を超える新たな損失関数を設計し,クラス間の不均衡を克服する。
論文 参考訳(メタデータ) (2020-07-21T14:37:00Z) - Melanoma Detection using Adversarial Training and Deep Transfer Learning [6.22964000148682]
皮膚病変画像の自動分類のための2段階の枠組みを提案する。
第1段階では、条件付き画像合成のタスクにおいて、データ分布のクラス間変動を利用する。
第2段階では,皮膚病変分類のための深部畳み込みニューラルネットワークを訓練する。
論文 参考訳(メタデータ) (2020-04-14T22:46:20Z) - 1-D Convlutional Neural Networks for the Analysis of Pupil Size
Variations in Scotopic Conditions [79.71065005161566]
1次元畳み込みニューラルネットワークモデルは、短距離配列の分類のために訓練されている。
モデルは、ホールドアウトテストセット上で、高い平均精度で予測を提供する。
論文 参考訳(メタデータ) (2020-02-06T17:25:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。