論文の概要: Human Age Estimation from Gene Expression Data using Artificial Neural
Networks
- arxiv url: http://arxiv.org/abs/2111.02692v1
- Date: Thu, 4 Nov 2021 08:57:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-05 20:56:00.198417
- Title: Human Age Estimation from Gene Expression Data using Artificial Neural
Networks
- Title(参考訳): ニューラルネットワークを用いた遺伝子発現データからの年齢推定
- Authors: Salman Mohamadi, Gianfranco.Doretto, Nasser M. Nasrabadi, Donald A.
Adjeroh
- Abstract要約: 本稿では,ヒト皮膚線維芽細胞遺伝子発現データから得られた情報を用いたヒト年齢推定のための新しい枠組みを提案する。
実験結果から,最先端の年齢推定手法よりも提案手法が優れていることが示唆された。
- 参考スコア(独自算出の注目度): 27.900947531352983
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The study of signatures of aging in terms of genomic biomarkers can be
uniquely helpful in understanding the mechanisms of aging and developing models
to accurately predict the age. Prior studies have employed gene expression and
DNA methylation data aiming at accurate prediction of age. In this line, we
propose a new framework for human age estimation using information from human
dermal fibroblast gene expression data. First, we propose a new spatial
representation as well as a data augmentation approach for gene expression
data. Next in order to predict the age, we design an architecture of neural
network and apply it to this new representation of the original and augmented
data, as an ensemble classification approach. Our experimental results suggest
the superiority of the proposed framework over state-of-the-art age estimation
methods using DNA methylation and gene expression data.
- Abstract(参考訳): ゲノムバイオマーカーによる老化のシグネチャの研究は、老化のメカニズムを理解し、年齢を正確に予測するモデルを開発するのに一役買うことができる。
以前の研究では、正確な年齢予測を目的とした遺伝子発現とdnaメチル化データを用いた。
本稿では,ヒト皮膚線維芽細胞遺伝子発現データから情報を得たヒト年齢推定のための新しい枠組みを提案する。
まず、新しい空間表現と、遺伝子発現データに対するデータ拡張アプローチを提案する。
次に、年齢を予測するために、ニューラルネットワークのアーキテクチャを設計し、アンサンブル分類アプローチとして、この新しいオリジナルデータと拡張データの表現に適用する。
実験結果は,dnaメチル化法と遺伝子発現データを用いた最先端年齢推定法よりも,提案フレームワークが優れていることを示唆する。
関連論文リスト
- BioDiscoveryAgent: An AI Agent for Designing Genetic Perturbation Experiments [112.25067497985447]
そこで,BioDiscoveryAgentを紹介した。このエージェントは,新しい実験を設計し,その結果の理由を明らかにし,仮説空間を効率的にナビゲートし,望ましい解に到達させる。
BioDiscoveryAgentは、機械学習モデルをトレーニングすることなく、新しい実験を独自に設計することができる。
6つのデータセットで関連する遺伝的摂動を予測することで、平均21%の改善が達成されている。
論文 参考訳(メタデータ) (2024-05-27T19:57:17Z) - Towards a Foundation Model for Brain Age Prediction using coVariance
Neural Networks [102.75954614946258]
時間的年齢に関する脳年齢の増加は、神経変性と認知低下に対する脆弱性の増加を反映している。
NeuroVNNは、時系列年齢を予測するために、健康な人口の回帰モデルとして事前訓練されている。
NeuroVNNは、脳の年齢に解剖学的解釈性を加え、任意の脳のアトラスに従って計算されたデータセットへの転移を可能にする「スケールフリー」特性を持つ。
論文 参考訳(メタデータ) (2024-02-12T14:46:31Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Genetic InfoMax: Exploring Mutual Information Maximization in
High-Dimensional Imaging Genetics Studies [50.11449968854487]
遺伝子ワイド・アソシエーション(GWAS)は、遺伝的変異と特定の形質の関係を同定するために用いられる。
画像遺伝学の表現学習は、GWASによって引き起こされる固有の課題により、ほとんど探索されていない。
本稿では,GWAS の具体的な課題に対処するために,トランスモーダル学習フレームワーク Genetic InfoMax (GIM) を提案する。
論文 参考訳(メタデータ) (2023-09-26T03:59:21Z) - An end-to-end framework for gene expression classification by
integrating a background knowledge graph: application to cancer prognosis
prediction [1.5484595752241122]
我々は、一次データの分類モデルを構築するために、二次データを扱うエンドツーエンドフレームワークを提案した。
我々はこの枠組みを,遺伝子発現データと生物学的ネットワークを用いた癌予後予測に応用した。
論文 参考訳(メタデータ) (2023-06-29T11:20:47Z) - Machine Learning Methods for Cancer Classification Using Gene Expression
Data: A Review [77.34726150561087]
がんは心臓血管疾患の2番目の死因である。
遺伝子発現は癌の早期発見において基本的な役割を担っている。
本研究は,機械学習を用いた癌分類における遺伝子発現解析の最近の進歩を概説する。
論文 参考訳(メタデータ) (2023-01-28T15:03:03Z) - An Information-Theoretic Framework for Identifying Age-Related Genes
Using Human Dermal Fibroblast Transcriptome Data [0.8122270502556371]
我々は老化に関連する遺伝子を同定するための情報理論フレームワークを開発した。
我々はヒト皮膚線維芽細胞遺伝子発現データに教師なしおよび半教師付き学習技術を用いた。
教師なし手法と半教師なし手法の両方のパフォーマンス評価は,フレームワークの有効性を示す。
論文 参考訳(メタデータ) (2021-11-04T02:41:33Z) - All You Need is Color: Image based Spatial Gene Expression Prediction
using Neural Stain Learning [11.9045433112067]
本研究では,空間的転写学的遺伝子発現プロファイルの予測のための機械学習手法を提案する。
提案手法から得られた遺伝子発現予測は,シークエンシングにより得られた真の表現値と高い相関関係を示した。
論文 参考訳(メタデータ) (2021-08-23T23:43:38Z) - Using ontology embeddings for structural inductive bias in gene
expression data analysis [6.587739898387445]
がん患者の遺伝子発現レベルに基づいて、診断、生存分析、治療計画を改善することができる。
本稿では,遺伝子発現データから患者の分類作業を行う機械学習システムに,遺伝子に関する生物学的知識を取り入れることを提案する。
論文 参考訳(メタデータ) (2020-11-22T12:13:29Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - A Semi-Supervised Generative Adversarial Network for Prediction of
Genetic Disease Outcomes [0.0]
本稿では, 遺伝的な遺伝的データセットを作成するために, gGAN (Generative Adversarial Networks) を導入する。
我々のゴールは、遺伝子プロファイルだけで病気の重篤な形態を発達させる新しい個人の正当性を決定することである。
提案モデルは自己認識型であり、ネットワークがトレーニングされたデータと十分に互換性のある新しい遺伝子プロファイルを決定することができる。
論文 参考訳(メタデータ) (2020-07-02T15:35:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。