Ferromagnetism in tilted fermionic Mott insulators
- URL: http://arxiv.org/abs/2111.03857v1
- Date: Sat, 6 Nov 2021 11:27:31 GMT
- Title: Ferromagnetism in tilted fermionic Mott insulators
- Authors: Kazuaki Takasan, Masaki Tezuka
- Abstract summary: We investigate the magnetism in tilted fermionic Mott insulators.
With a small tilt, the fermions are still localized and form a Mott-insulating state.
While the localized state is naively expected to be broken with a large tilt, in fact, the fermions are still localized under a large tilt.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the magnetism in tilted fermionic Mott insulators. With a
small tilt, the fermions are still localized and form a Mott-insulating state,
where the localized spins interact via antiferromagnetic exchange coupling.
While the localized state is naively expected to be broken with a large tilt,
in fact, the fermions are still localized under a large tilt due to the
Wannier-Stark localization and it can be regarded as a localized spin system.
We find that the sign of the exchange coupling is changed and the ferromagnetic
interaction is realized under the large tilt. To show this, we employ the
perturbation theory and the real-time numerical simulation with the fermionic
Hubbard chain. Our simulation exhibits that it is possible to effectively
control the speed and time direction of the dynamics by changing the size of
tilt, which may be useful for experimentally measuring the out-of-time ordered
correlators. Finally, we address the experimental platforms, such as ultracold
atoms in an optical lattice, to observe these phenomena.
Related papers
- Bosonic Peierls state emerging from the one-dimensional Ising-Kondo interaction [0.6086160084025234]
Peierls transition, a hot topic in condensed matter physics, is usually believed to occur in the one-dimensional fermionic systems.
We show that, by means of perturbation analysis and numerical density-matrix renormalization group method, a bosonic analog of the Peierls state can occur in proper parameters regimes.
arXiv Detail & Related papers (2024-11-25T13:10:53Z) - Chiral Pseudo Spin Liquids in Moire Heterostructures [0.0]
We propose multi-layer moire structures in strong external magnetic fields as a novel platform for realizing frustrated Hubbard physics with topological order.
We identify the layer degree of freedom as a pseudo spin and control ring-exchange processes and concurrently quenching the kinetic energy by large external magnetic fields.
We find that this topologically ordered state remains exceptionally stable towards relevant perturbations.
arXiv Detail & Related papers (2022-09-12T18:00:10Z) - Radio-frequency manipulation of state populations in an entangled
fluorine-muon-fluorine system [0.0]
Entangled spin states are created by implanting muons into single crystal LiY0.95Ho0.05F4.
The resulting states have well-defined energy levels allowing experimental manipulation of the state populations.
arXiv Detail & Related papers (2022-04-11T13:09:36Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Metastable spin-phase diagrams in antiferromagnetic Bose-Einstein
condensates [0.0]
We study theoretically the metastable spin-phase diagram of a spin-1 antiferromagnetic Bose-Einstein condensate at zero and finite temperatures.
Results are consistent with recent experiments and allow us to explain qualitatively the different types of observed quench dynamics.
arXiv Detail & Related papers (2021-09-05T03:47:59Z) - Phase diagram of a distorted kagome antiferromagnet and application to
Y-kapellasite [50.591267188664666]
We reveal a rich ground state phase diagram even at the classical level.
The presented model opens a new direction in the study of kagome antiferromagnets.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Gravity Probe Spin: Prospects for measuring general-relativistic
precession of intrinsic spin using a ferromagnetic gyroscope [51.51258642763384]
An experimental test at the intersection of quantum physics and general relativity is proposed.
The behavior of intrinsic spin in spacetime is an experimentally open question.
A measurement is possible by using mm-scale ferromagnetic gyroscopes in orbit around the Earth.
arXiv Detail & Related papers (2020-06-16T17:18:44Z) - Coupling a mobile hole to an antiferromagnetic spin background:
Transient dynamics of a magnetic polaron [0.0]
In this work, we use a cold-atom quantum simulator to directly observe the formation dynamics and subsequent spreading of individual magnetic polarons.
Measuring the density- and spin-resolved evolution of a single hole in a 2D Hubbard insulator with short-range antiferromagnetic correlations reveals fast initial delocalization and a dressing of the spin background.
Our work enables the study of out-of-equilibrium emergent phenomena in the Fermi-Hubbard model, one dopant at a time.
arXiv Detail & Related papers (2020-06-11T17:59:54Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.