Representation Learning via Quantum Neural Tangent Kernels
- URL: http://arxiv.org/abs/2111.04225v2
- Date: Tue, 9 Nov 2021 16:56:46 GMT
- Title: Representation Learning via Quantum Neural Tangent Kernels
- Authors: Junyu Liu, Francesco Tacchino, Jennifer R. Glick, Liang Jiang, Antonio
Mezzacapo
- Abstract summary: Variational quantum circuits are used in quantum machine learning and variational quantum simulation tasks.
Here we discuss these problems, analyzing variational quantum circuits using the theory of neural tangent kernels.
We analytically solve the dynamics in the frozen limit, or lazy training regime, where variational angles change slowly and a linear perturbation is good enough.
- Score: 10.168123455922249
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Variational quantum circuits are used in quantum machine learning and
variational quantum simulation tasks. Designing good variational circuits or
predicting how well they perform for given learning or optimization tasks is
still unclear. Here we discuss these problems, analyzing variational quantum
circuits using the theory of neural tangent kernels. We define quantum neural
tangent kernels, and derive dynamical equations for their associated loss
function in optimization and learning tasks. We analytically solve the dynamics
in the frozen limit, or lazy training regime, where variational angles change
slowly and a linear perturbation is good enough. We extend the analysis to a
dynamical setting, including quadratic corrections in the variational angles.
We then consider hybrid quantum-classical architecture and define a large-width
limit for hybrid kernels, showing that a hybrid quantum-classical neural
network can be approximately Gaussian. The results presented here show limits
for which analytical understandings of the training dynamics for variational
quantum circuits, used for quantum machine learning and optimization problems,
are possible. These analytical results are supported by numerical simulations
of quantum machine learning experiments.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Deep learning-based quantum algorithms for solving nonlinear partial
differential equations [3.312385039704987]
Partial differential equations frequently appear in the natural sciences and related disciplines.
We explore the potential for enhancing a classical deep learning-based method for solving high-dimensional nonlinear partial differential equations.
arXiv Detail & Related papers (2023-05-03T10:17:51Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing.
Key issue is how to address the inherent non-linearity of classical deep learning.
We introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning.
arXiv Detail & Related papers (2022-12-22T16:06:24Z) - Time-Optimal Quantum Driving by Variational Circuit Learning [2.9582851733261286]
Digital quantum simulation and hybrid circuit learning opens up new prospects for quantum optimal control.
We simulate the wave-packet expansion of a trapped quantum particle on a quantum device with a finite number qubits.
We discuss the robustness of our method against errors and demonstrate the absence of barren plateaus in the circuit.
arXiv Detail & Related papers (2022-11-01T11:53:49Z) - Quantum Neural Architecture Search with Quantum Circuits Metric and
Bayesian Optimization [2.20200533591633]
We propose a new quantum gates distance that characterizes the gates' action over every quantum state.
Our approach significantly outperforms the benchmark on three empirical quantum machine learning problems.
arXiv Detail & Related papers (2022-06-28T16:23:24Z) - Analytic theory for the dynamics of wide quantum neural networks [7.636414695095235]
We study the dynamics of gradient descent for the training error of a class of variational quantum machine learning models.
For random quantum circuits, we predict and characterize an exponential decay of the residual training error as a function of the parameters of the system.
arXiv Detail & Related papers (2022-03-30T23:24:06Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Variational Quantum Classifiers Through the Lens of the Hessian [0.0]
In quantum computing, variational quantum algorithms (VQAs) are well suited for finding optimal combinations of things.
The training of VQAs with gradient descent optimization algorithm has shown a good convergence.
Just like classical deep learning, variational quantum circuits suffer from vanishing gradient problems.
arXiv Detail & Related papers (2021-05-21T06:57:34Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.