Analytic theory for the dynamics of wide quantum neural networks
- URL: http://arxiv.org/abs/2203.16711v3
- Date: Wed, 12 Apr 2023 01:05:19 GMT
- Title: Analytic theory for the dynamics of wide quantum neural networks
- Authors: Junyu Liu, Khadijeh Najafi, Kunal Sharma, Francesco Tacchino, Liang
Jiang, Antonio Mezzacapo
- Abstract summary: We study the dynamics of gradient descent for the training error of a class of variational quantum machine learning models.
For random quantum circuits, we predict and characterize an exponential decay of the residual training error as a function of the parameters of the system.
- Score: 7.636414695095235
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Parameterized quantum circuits can be used as quantum neural networks and
have the potential to outperform their classical counterparts when trained for
addressing learning problems. To date, much of the results on their performance
on practical problems are heuristic in nature. In particular, the convergence
rate for the training of quantum neural networks is not fully understood. Here,
we analyze the dynamics of gradient descent for the training error of a class
of variational quantum machine learning models. We define wide quantum neural
networks as parameterized quantum circuits in the limit of a large number of
qubits and variational parameters. We then find a simple analytic formula that
captures the average behavior of their loss function and discuss the
consequences of our findings. For example, for random quantum circuits, we
predict and characterize an exponential decay of the residual training error as
a function of the parameters of the system. We finally validate our analytic
results with numerical experiments.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Expressibility-induced Concentration of Quantum Neural Tangent Kernels [4.561685127984694]
We study the connections between the trainability and expressibility of quantum tangent kernel models.
For global loss functions, we rigorously prove that high expressibility of both the global and local quantum encodings can lead to exponential concentration of quantum tangent kernel values to zero.
Our discoveries unveil a pivotal characteristic of quantum neural tangent kernels, offering valuable insights for the design of wide quantum variational circuit models.
arXiv Detail & Related papers (2023-11-08T19:00:01Z) - Information-driven Nonlinear Quantum Neuron [0.0]
In this study, a hardware-efficient quantum neural network operating as an open quantum system is proposed.
We show that this dissipative model based on repeated interactions, which allows for easy parametrization of input quantum information, exhibits differentiable, non-linear activation functions.
arXiv Detail & Related papers (2023-07-18T07:12:08Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing.
Key issue is how to address the inherent non-linearity of classical deep learning.
We introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning.
arXiv Detail & Related papers (2022-12-22T16:06:24Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Representation Learning via Quantum Neural Tangent Kernels [10.168123455922249]
Variational quantum circuits are used in quantum machine learning and variational quantum simulation tasks.
Here we discuss these problems, analyzing variational quantum circuits using the theory of neural tangent kernels.
We analytically solve the dynamics in the frozen limit, or lazy training regime, where variational angles change slowly and a linear perturbation is good enough.
arXiv Detail & Related papers (2021-11-08T01:30:34Z) - Exponentially Many Local Minima in Quantum Neural Networks [9.442139459221785]
Quantum Neural Networks (QNNs) are important quantum applications because of their similar promises as classical neural networks.
We conduct a quantitative investigation on the landscape of loss functions of QNNs and identify a class of simple yet extremely hard QNN instances for training.
We empirically confirm that our constructions can indeed be hard instances in practice with typical gradient-based circuits.
arXiv Detail & Related papers (2021-10-06T03:23:44Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
We develop an approach to characterize the dynamics of a quantum device and learn device parameters.
This approach outperforms physics-agnostic recurrent neural networks trained on numerically generated and experimental data.
This demonstration shows how leveraging domain knowledge improves the accuracy and efficiency of this characterization task.
arXiv Detail & Related papers (2021-06-24T15:58:57Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Recurrent Quantum Neural Networks [7.6146285961466]
Recurrent neural networks are the foundation of many sequence-to-sequence models in machine learning.
We construct a quantum recurrent neural network (QRNN) with demonstrable performance on non-trivial tasks.
We evaluate the QRNN on MNIST classification, both by feeding the QRNN each image pixel-by-pixel; and by utilising modern data augmentation as preprocessing step.
arXiv Detail & Related papers (2020-06-25T17:59:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.