論文の概要: Identifying Best Fair Intervention
- arxiv url: http://arxiv.org/abs/2111.04272v1
- Date: Mon, 8 Nov 2021 04:36:54 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-09 15:34:53.914398
- Title: Identifying Best Fair Intervention
- Title(参考訳): 最善の公平な介入を
- Authors: Ruijiang Gao, Han Feng
- Abstract要約: 本研究では,所定の因果モデルにおけるフェアネス制約付き腕識別の問題について検討する。
この問題は、オンラインマーケットプレースにおける公正性の確保によって動機づけられている。
- 参考スコア(独自算出の注目度): 7.563864405505623
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of best arm identification with a fairness constraint in
a given causal model. The goal is to find a soft intervention on a given node
to maximize the outcome while meeting a fairness constraint by counterfactual
estimation with only partial knowledge of the causal model. The problem is
motivated by ensuring fairness on an online marketplace. We provide theoretical
guarantees on the probability of error and empirically examine the
effectiveness of our algorithm with a two-stage baseline.
- Abstract(参考訳): 与えられた因果モデルにおいて,公平性制約を伴う最良腕識別の問題について検討する。
目的は、因果モデルの部分的知識のみを用いて、対実推定による公正性制約を満たしながら、結果の最大化のために、与えられたノードにソフトな介入を見つけることである。
問題は、オンライン市場における公平性を確保することにある。
誤差の確率を理論的に保証し、2段階のベースラインでアルゴリズムの有効性を実証的に検証する。
関連論文リスト
- Targeted Learning for Data Fairness [52.59573714151884]
データ生成プロセス自体の公平性を評価することにより、公平性推論を拡張する。
我々は、人口統計学的平等、平等機会、条件付き相互情報から推定する。
提案手法を検証するため,いくつかのシミュレーションを行い,実データに適用する。
論文 参考訳(メタデータ) (2025-02-06T18:51:28Z) - Understanding Fairness Surrogate Functions in Algorithmic Fairness [21.555040357521907]
フェアネスの定義とフェアネスのサロゲート関数の間には、サロゲートとフェアネスのギャップがあることが示される。
我々は、不公平を緩和するギャップを反復的に減少させる「バランスド・サロゲート」という、新規で一般的なアルゴリズムを精査する。
論文 参考訳(メタデータ) (2023-10-17T12:40:53Z) - Arbitrariness Lies Beyond the Fairness-Accuracy Frontier [3.383670923637875]
我々は,最先端のフェアネス介入が,グループフェアネスと精度の指標よりも高い予測倍率を隠蔽できることを示した。
より一貫した予測を確実に保証するフェアネス介入に適用可能なアンサンブルアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-15T18:15:46Z) - Group Fairness with Uncertainty in Sensitive Attributes [34.608332397776245]
公正な予測モデルは、ハイテイクなアプリケーションにおける少数派グループに対する偏見のある決定を緩和するために不可欠である。
本稿では, 感度特性の不確実性にも拘わらず, フェアネスの目標レベルを達成するブートストラップに基づくアルゴリズムを提案する。
本アルゴリズムは離散的属性と連続的属性の両方に適用可能であり,実世界の分類や回帰作業に有効である。
論文 参考訳(メタデータ) (2023-02-16T04:33:00Z) - Fairness in Matching under Uncertainty [78.39459690570531]
アルゴリズム的な二面市場は、こうした設定における公平性の問題に注意を向けている。
我々は、利益の不確実性を尊重する両面の市場設定において、個々人の公正性の概念を公理化する。
そこで我々は,配当よりも公平なユーティリティ最大化分布を求めるために,線形プログラミングフレームワークを設計する。
論文 参考訳(メタデータ) (2023-02-08T00:30:32Z) - Stochastic Methods for AUC Optimization subject to AUC-based Fairness
Constraints [51.12047280149546]
公正な予測モデルを得るための直接的なアプローチは、公正な制約の下で予測性能を最適化することでモデルを訓練することである。
フェアネスを考慮した機械学習モデルのトレーニング問題を,AUCに基づくフェアネス制約のクラスを対象とする最適化問題として定式化する。
フェアネス測定値の異なる実世界のデータに対するアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-12-23T22:29:08Z) - Fairness Increases Adversarial Vulnerability [50.90773979394264]
フェアネスとロバストネスの間に二分法が存在することを示し、フェアネスを達成するとモデルロバストネスを減少させる。
非線形モデルと異なるアーキテクチャの実験は、複数の視覚領域における理論的発見を検証する。
フェアネスとロバストネスの良好なトレードオフを達成するためのモデルを構築するための,シンプルで効果的なソリューションを提案する。
論文 参考訳(メタデータ) (2022-11-21T19:55:35Z) - SLIDE: a surrogate fairness constraint to ensure fairness consistency [1.3649494534428745]
本稿では, SLIDE と呼ばれる新しい代用フェアネス制約を提案し, 高速収束率を実現する。
数値実験により、SLIDEは様々なベンチマークデータセットでうまく機能することを確認した。
論文 参考訳(メタデータ) (2022-02-07T13:50:21Z) - Accounting for Model Uncertainty in Algorithmic Discrimination [16.654676310264705]
フェアネスアプローチは、モデルの不確実性に起因するエラーの均等化にのみ焦点をあてるべきである。
予測多重性とモデル不確実性の間に関係をもち、予測多重性からの手法がモデル不確実性に起因するエラーの特定に使用できると主張する。
論文 参考訳(メタデータ) (2021-05-10T10:34:12Z) - Beyond Individual and Group Fairness [90.4666341812857]
本稿では,不公平な不公平な苦情に導かれる公平さの新しいデータ駆動モデルを提案する。
我々のモデルは、複数のフェアネス基準をサポートし、それらの潜在的な不整合を考慮に入れている。
論文 参考訳(メタデータ) (2020-08-21T14:14:44Z) - Decomposed Adversarial Learned Inference [118.27187231452852]
我々は,DALI(Decomposed Adversarial Learned Inference)という新しいアプローチを提案する。
DALIは、データ空間とコード空間の両方の事前および条件分布を明示的に一致させる。
MNIST, CIFAR-10, CelebAデータセットにおけるDALIの有効性を検証する。
論文 参考訳(メタデータ) (2020-04-21T20:00:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。