Identifying Best Fair Intervention
- URL: http://arxiv.org/abs/2111.04272v1
- Date: Mon, 8 Nov 2021 04:36:54 GMT
- Title: Identifying Best Fair Intervention
- Authors: Ruijiang Gao, Han Feng
- Abstract summary: We study the problem of best arm identification with a fairness constraint in a given causal model.
The problem is motivated by ensuring fairness on an online marketplace.
- Score: 7.563864405505623
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of best arm identification with a fairness constraint in
a given causal model. The goal is to find a soft intervention on a given node
to maximize the outcome while meeting a fairness constraint by counterfactual
estimation with only partial knowledge of the causal model. The problem is
motivated by ensuring fairness on an online marketplace. We provide theoretical
guarantees on the probability of error and empirically examine the
effectiveness of our algorithm with a two-stage baseline.
Related papers
- Fairness-Accuracy Trade-Offs: A Causal Perspective [58.06306331390586]
We analyze the tension between fairness and accuracy from a causal lens for the first time.
We show that enforcing a causal constraint often reduces the disparity between demographic groups.
We introduce a new neural approach for causally-constrained fair learning.
arXiv Detail & Related papers (2024-05-24T11:19:52Z) - Understanding Fairness Surrogate Functions in Algorithmic Fairness [21.555040357521907]
We show that there is a surrogate-fairness gap between the fairness definition and the fairness surrogate function.
We elaborate a novel and general algorithm called Balanced Surrogate, which iteratively reduces the gap to mitigate unfairness.
arXiv Detail & Related papers (2023-10-17T12:40:53Z) - Arbitrariness Lies Beyond the Fairness-Accuracy Frontier [3.383670923637875]
We show that state-of-the-art fairness interventions can mask high predictive multiplicity behind favorable group fairness and accuracy metrics.
We propose an ensemble algorithm applicable to any fairness intervention that provably ensures more consistent predictions.
arXiv Detail & Related papers (2023-06-15T18:15:46Z) - Group Fairness with Uncertainty in Sensitive Attributes [34.608332397776245]
A fair predictive model is crucial to mitigate biased decisions against minority groups in high-stakes applications.
We propose a bootstrap-based algorithm that achieves the target level of fairness despite the uncertainty in sensitive attributes.
Our algorithm is applicable to both discrete and continuous sensitive attributes and is effective in real-world classification and regression tasks.
arXiv Detail & Related papers (2023-02-16T04:33:00Z) - Fairness in Matching under Uncertainty [78.39459690570531]
algorithmic two-sided marketplaces have drawn attention to the issue of fairness in such settings.
We axiomatize a notion of individual fairness in the two-sided marketplace setting which respects the uncertainty in the merits.
We design a linear programming framework to find fair utility-maximizing distributions over allocations.
arXiv Detail & Related papers (2023-02-08T00:30:32Z) - Stochastic Methods for AUC Optimization subject to AUC-based Fairness
Constraints [51.12047280149546]
A direct approach for obtaining a fair predictive model is to train the model through optimizing its prediction performance subject to fairness constraints.
We formulate the training problem of a fairness-aware machine learning model as an AUC optimization problem subject to a class of AUC-based fairness constraints.
We demonstrate the effectiveness of our approach on real-world data under different fairness metrics.
arXiv Detail & Related papers (2022-12-23T22:29:08Z) - Fairness Increases Adversarial Vulnerability [50.90773979394264]
This paper shows the existence of a dichotomy between fairness and robustness, and analyzes when achieving fairness decreases the model robustness to adversarial samples.
Experiments on non-linear models and different architectures validate the theoretical findings in multiple vision domains.
The paper proposes a simple, yet effective, solution to construct models achieving good tradeoffs between fairness and robustness.
arXiv Detail & Related papers (2022-11-21T19:55:35Z) - SLIDE: a surrogate fairness constraint to ensure fairness consistency [1.3649494534428745]
We propose a new surrogate fairness constraint called SLIDE, which is feasible and achieves a fast convergence rate.
Numerical experiments confirm that SLIDE works well for various benchmark datasets.
arXiv Detail & Related papers (2022-02-07T13:50:21Z) - Accounting for Model Uncertainty in Algorithmic Discrimination [16.654676310264705]
We argue that the fairness approaches should instead focus only on equalizing errors arising due to model uncertainty.
We draw a connection between predictive multiplicity and model uncertainty and argue that the techniques from predictive multiplicity could be used to identify errors made due to model uncertainty.
arXiv Detail & Related papers (2021-05-10T10:34:12Z) - Beyond Individual and Group Fairness [90.4666341812857]
We present a new data-driven model of fairness that is guided by the unfairness complaints received by the system.
Our model supports multiple fairness criteria and takes into account their potential incompatibilities.
arXiv Detail & Related papers (2020-08-21T14:14:44Z) - Decomposed Adversarial Learned Inference [118.27187231452852]
We propose a novel approach, Decomposed Adversarial Learned Inference (DALI)
DALI explicitly matches prior and conditional distributions in both data and code spaces.
We validate the effectiveness of DALI on the MNIST, CIFAR-10, and CelebA datasets.
arXiv Detail & Related papers (2020-04-21T20:00:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.