論文の概要: Exploratory Factor Analysis of Data on a Sphere
- arxiv url: http://arxiv.org/abs/2111.04940v1
- Date: Tue, 9 Nov 2021 03:41:28 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-10 15:56:16.674816
- Title: Exploratory Factor Analysis of Data on a Sphere
- Title(参考訳): 球面上のデータの探索的因子分析
- Authors: Fan Dai and Karin S. Dorman and Somak Dutta and Ranjan Maitra
- Abstract要約: 本研究では,予測正規分布の探索的因子分析を行い,その変動性を説明する。
提案手法は, 高速変動予測プロファイル条件付きアルゴリズムを用いて, 最大推定値を提供する。
- 参考スコア(独自算出の注目度): 8.717253904965371
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data on high-dimensional spheres arise frequently in many disciplines either
naturally or as a consequence of preliminary processing and can have intricate
dependence structure that needs to be understood. We develop exploratory factor
analysis of the projected normal distribution to explain the variability in
such data using a few easily interpreted latent factors. Our methodology
provides maximum likelihood estimates through a novel fast alternating
expectation profile conditional maximization algorithm. Results on simulation
experiments on a wide range of settings are uniformly excellent. Our
methodology provides interpretable and insightful results when applied to
tweets with the $\#MeToo$ hashtag in early December 2018, to time-course
functional Magnetic Resonance Images of the average pre-teen brain at rest, to
characterize handwritten digits, and to gene expression data from cancerous
cells in the Cancer Genome Atlas.
- Abstract(参考訳): 高次元球面上のデータは、通常または予備処理の結果、多くの分野において頻繁に発生し、理解する必要のある複雑な依存構造を持つ。
そこで本研究では, 予測正規分布の探索的因子分析を行い, 比較的容易に解釈できる潜在因子を用いて, データの変動性を説明する。
提案手法は,新しい高速交互予測プロファイル条件付き最大化アルゴリズムにより最大推定を行う。
幅広い環境におけるシミュレーション実験の結果は均一に優れている。
提案手法は,2018年12月初旬に$\#metoo$ハッシュタグを用いたツイートに対して,平均的な10代前脳の時間経過機能的磁気共鳴画像に適用し,手書きの数字を特徴付け,がんゲノムアトラスにおける癌細胞からの遺伝子発現データを提供する。
関連論文リスト
- High-dimensional prediction for count response via sparse exponential weights [0.0]
本稿では,高次元カウントデータ予測のための新しい確率的機械学習フレームワークを提案する。
重要な貢献は、データ予測をカウントするために調整された新しいリスク尺度であり、PAC-ベイズ境界を用いた予測リスクの理論的な保証である。
以上の結果から,非漸近性オラクルの不等式や,空間性に関する事前知識を伴わない速度-最適予測誤差が示唆された。
論文 参考訳(メタデータ) (2024-10-20T12:45:42Z) - Permutation invariant multi-output Gaussian Processes for drug combination prediction in cancer [2.1145050293719745]
がんにおける線量応答予測は、機械学習における活発な応用分野である。
目標は、実験的な設計をガイドしたり、治療決定を知らせるために使用できる正確な予測モデルを開発することである。
論文 参考訳(メタデータ) (2024-06-28T18:28:38Z) - Pathology-and-genomics Multimodal Transformer for Survival Outcome
Prediction [43.1748594898772]
大腸癌生存予測に病理学とゲノム学的知見を統合したマルチモーダルトランスフォーマー(PathOmics)を提案する。
ギガピクセル全スライド画像における組織ミクロ環境間の内在的相互作用を捉えるための教師なし事前訓練を強調した。
我々は,TCGA大腸癌と直腸癌コホートの両方に対するアプローチを評価し,提案手法は競争力があり,最先端の研究より優れていることを示す。
論文 参考訳(メタデータ) (2023-07-22T00:59:26Z) - Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
Estimation for Latent Gaussian Models [69.22568644711113]
我々は,モンテカルロサンプリングと反復線形解法を組み合わせた確率的アンローリングを導入し,行列逆転を回避した。
理論的解析により,解法の繰り返しによる解法の解法と逆転が最大値推定の勾配推定を高速化することを示した。
シミュレーションおよび実データ実験において、確率的アンロールは、モデル性能の損失を最小限に抑えながら、勾配EMよりも桁違いに高速な潜在ガウスモデルを学習することを示した。
論文 参考訳(メタデータ) (2023-06-05T21:08:34Z) - Interpretable machine learning for time-to-event prediction in medicine and healthcare [7.416913210816592]
時間依存的な特徴効果とグローバルな特徴重大説明を導入する。
我々は、ポストホックな解釈手法が、滞在期間を予測するAIシステムのバイアスを見つけるのにどのように役立つかを示す。
我々は,がんの生存率を予測性能を超えて評価し,マルチオミクスの特徴群の重要性を考察した。
論文 参考訳(メタデータ) (2023-03-17T07:53:18Z) - RandomSCM: interpretable ensembles of sparse classifiers tailored for
omics data [59.4141628321618]
決定規則の結合や解離に基づくアンサンブル学習アルゴリズムを提案する。
モデルの解釈可能性により、高次元データのバイオマーカー発見やパターン発見に有用である。
論文 参考訳(メタデータ) (2022-08-11T13:55:04Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
本稿では,構造空間上でインスタンス化された同変表現学習における最近の結果と,因果推論における古典的結果の簡易な利用が,いかに効果的に実現されたかを示す。
いくつかの仮定の下で、我々のモデルが複数のニュアンス変数を扱えることを実証し、そうでなければサンプルの大部分を取り除く必要のあるシナリオにおいて、プールされた科学データセットの分析を可能にする。
論文 参考訳(メタデータ) (2022-03-29T04:54:06Z) - Efficient Multidimensional Functional Data Analysis Using Marginal
Product Basis Systems [2.4554686192257424]
多次元関数データのサンプルから連続表現を学習するためのフレームワークを提案する。
本研究では, テンソル分解により, 得られた推定問題を効率的に解けることを示す。
我々は、ニューロイメージングにおける真のデータ応用で締めくくっている。
論文 参考訳(メタデータ) (2021-07-30T16:02:15Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
被験者の大規模なコホートを含むグループ研究は、脳機能組織に関する一般的な結論を引き出す上で重要である。
グループ研究のための新しい多視点独立成分分析モデルを提案し、各被験者のデータを共有独立音源と雑音の線形結合としてモデル化する。
まず、fMRIデータを用いて、被験者間の共通音源の同定における感度の向上を示す。
論文 参考訳(メタデータ) (2020-06-11T17:29:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。