Gravitational Decoherence in Deep Space Experiments
- URL: http://arxiv.org/abs/2111.05441v1
- Date: Tue, 9 Nov 2021 22:44:15 GMT
- Title: Gravitational Decoherence in Deep Space Experiments
- Authors: Charis Anastopoulos, Miles Blencowe and Bei-Lok Hu
- Abstract summary: This white paper points to the far-reaching significance of gravitational decoherence experiments.
Experiments can provide clues as to whether gravity is of fundamental or an effective nature.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Among the many worthwhile quantum experiments taking advantage of long
baselines in space, this white paper points to the far-reaching significance of
gravitational decoherence experiments. These experiments can provide clues as
to whether gravity is of a fundamental or an effective nature. They can also
discriminate between the predictions of quantum field theory in curved
spacetime, our default theory for quantum phenomena in background gravitational
fields, and other popular alternative quantum theories.
Related papers
- Quantum-information methods for quantum gravity laboratory-based tests [0.0]
We review the nascent field of information-theoretic methods applied to designing tests of quantum gravity in the laboratory.
We shall focus mainly on the detection of gravitational entanglement between two quantum probes, comparing this method with single-probe schemes.
We shall also highlight the role of general information-theoretic principles in illuminating the search for quantum effects in gravity.
arXiv Detail & Related papers (2024-10-08T19:51:10Z) - Is Planckian discreteness observable in cosmology? [47.03992469282679]
A Planck scale inflationary era produces the scale invariant spectrum of inhomogeneities with very small tensor-to-scalar ratio of perturbations.
Here we evoke the possibility that some of the major puzzles in cosmology would have an explanation rooted in quantum gravity.
arXiv Detail & Related papers (2024-05-21T06:53:37Z) - Detecting Gravitationally Interacting Dark Matter with Quantum Interference [47.03992469282679]
We show that there is a theoretical possibility to directly detect such particles using highly sensitive gravity-mediated quantum phase shifts.
In particular, we consider a protocol utilizing Josephson junctions.
arXiv Detail & Related papers (2023-09-15T08:22:46Z) - Testing the Braneworld Theory with Identical Particles [41.94295877935867]
braneworld scenarios postulate that the spacetime we effectively observe is actually a 4-dimensional brane embedded in a higher-dimensional spacetime.
We propose an experimental test that uses a pair of gravitationally interacting identical particles to determine the validity of certain braneworld models.
arXiv Detail & Related papers (2023-09-06T16:40:12Z) - Decoherence of a composite particle induced by a weak quantized
gravitational field [0.0]
We study the decoherence of a quantum system induced by the quantized gravitational field and by its own quantum nature.
Our results may be important in providing a better understanding of many phenomena like the decoherence induced by the gravitational time-dilation.
arXiv Detail & Related papers (2023-08-14T20:49:16Z) - Testing the nonclassicality of gravity with the field of a single
delocalized mass [55.2480439325792]
A setup is proposed that is based on a single delocalized mass coupled to a harmonically trapped test mass.
We investigate the in-principle feasibility of such an experiment, which turns out to crucially depend on the ability to tame Casimir-Polder forces.
arXiv Detail & Related papers (2023-07-18T15:40:16Z) - Perspective on Quantum Bubbles in Microgravity [40.448811194740536]
The NASA Cold Atom Laboratory (CAL) aboard the International Space Station has enabled the study of ultracold atomic bubbles.
Cal experiments have been performed on CAL with an.
rf-dressing technique; an alternate technique (dual-species interaction-driven bubbles) has also been proposed.
Both techniques can drive discovery in the next decade of fundamental physics research in microgravity.
arXiv Detail & Related papers (2022-11-09T10:55:49Z) - Inference of gravitational field superposition from quantum measurements [1.7246954941200043]
In non-relativistic quantum mechanics, the gravitational field in such experiments can be written as a superposition state.
We empirically demonstrate that alternative theories of gravity can avoid gravitational superposition states.
Proposed experiments with superposed gravitational sources would provide even stronger evidence that gravity is nonclassical.
arXiv Detail & Related papers (2022-09-06T04:37:07Z) - The Deep Space Quantum Link: Prospective Fundamental Physics Experiments
using Long-Baseline Quantum Optics [38.70192555674464]
The Deep Space Quantum Link mission concept enables a unique set of science experiments.
Mission configurations include establishing a quantum link between the Lunar Gateway moon-orbiting space station and nodes on or near the Earth.
arXiv Detail & Related papers (2021-11-30T17:35:05Z) - Can we detect the quantum nature of weak gravitational fields? [0.0]
An experimental answer to the question of the quantization of gravity is of renewed interest in the era of gravitational wave detectors.
We review and investigate an important subset of quantum gravity, detecting quantum signatures of weak gravitational fields in table-top experiments and interferometers.
arXiv Detail & Related papers (2021-10-06T07:21:09Z) - Relativistic Particle Motion and Quantum Optics in a Weak Gravitational
Field [0.0]
Long-baseline quantum experiments in space make it necessary to better understand the time evolution of relativistic quantum particles in a weakly varying gravitational field.
We explain why conventional treatments by traditional quantum optics and atomic physics may become inadequate when faced with issues related to locality, simultaneity, signaling, causality, etc.
Adding the effects of gravitation, we are led to Quantum Field Theory in Curved Spacetime (QFTCST)
This well-established theory should serve as the canonical reference theory to a large class of proposed space experiments testing the foundations of gravitation and quantum theory.
arXiv Detail & Related papers (2021-06-23T16:32:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.