論文の概要: Cross-lingual Adaption Model-Agnostic Meta-Learning for Natural Language
Understanding
- arxiv url: http://arxiv.org/abs/2111.05805v1
- Date: Wed, 10 Nov 2021 16:53:50 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-11 15:06:27.974229
- Title: Cross-lingual Adaption Model-Agnostic Meta-Learning for Natural Language
Understanding
- Title(参考訳): 言語間適応モデル-自然言語理解のためのメタラーニング
- Authors: Qianying Liu, Fei Cheng, Sadao Kurohashi
- Abstract要約: メタ学習段階で直接言語間適応を行うXLA-MAMLを提案する。
自然言語推論と質問応答に関するゼロショットと少数ショットの実験を行った。
- 参考スコア(独自算出の注目度): 24.66203356497508
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Meta learning with auxiliary languages has demonstrated promising
improvements for cross-lingual natural language processing. However, previous
studies sample the meta-training and meta-testing data from the same language,
which limits the ability of the model for cross-lingual transfer. In this
paper, we propose XLA-MAML, which performs direct cross-lingual adaption in the
meta-learning stage. We conduct zero-shot and few-shot experiments on Natural
Language Inference and Question Answering. The experimental results demonstrate
the effectiveness of our method across different languages, tasks, and
pretrained models. We also give analysis on various cross-lingual specific
settings for meta-learning including sampling strategy and parallelism.
- Abstract(参考訳): 補助言語を用いたメタ学習は、言語間自然言語処理において有望な改善を示す。
しかし、以前の研究では、同じ言語からのメタトレーニングとメタテストのデータがサンプリングされ、言語間移動のモデルの性能が制限された。
本稿では,メタラーニング段階で直接言語間適応を行うXLA-MAMLを提案する。
自然言語推論と質問応答に関するゼロショットと少数ショットの実験を行った。
実験結果から,異なる言語,タスク,事前学習モデルにまたがる手法の有効性が示された。
また,サンプリング戦略や並列処理を含むメタラーニングのための言語横断的特徴の分析を行う。
関連論文リスト
- Multilingual Few-Shot Learning via Language Model Retrieval [18.465566186549072]
トランスフォーマーベースの言語モデルは、数ショットのインコンテキスト学習において顕著な成功を収めた。
本研究は,意味論的に類似したショットサンプルを検索し,コンテキストとして利用する研究である。
提案手法を,意図検出,質問分類,感情分析,話題分類に関連する5つの自然言語理解データセット上で評価した。
論文 参考訳(メタデータ) (2023-06-19T14:27:21Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
本稿では,インスタンスを条件付きで符号化するためのフレキシブルガイダンスとして,コンテキスト的にプロンプトを検索するXLM-Pを提案する。
我々のXLM-Pは、(1)言語間における言語不変および言語固有知識の軽量なモデリングを可能にし、(2)他の多言語事前学習手法との容易な統合を可能にする。
論文 参考訳(メタデータ) (2023-06-13T08:08:08Z) - How do languages influence each other? Studying cross-lingual data sharing during LM fine-tuning [14.02101305717738]
多言語大言語モデル(MLLM)は、多くの異なる言語からのデータに基づいて共同で訓練される。
言語がどの程度、どの条件下で、互いのデータに依存しているかは、まだ不明である。
MLLMは、細調整の初期段階から複数の言語からのデータに依存しており、細調整の進行に伴って、この依存度が徐々に増加することが判明した。
論文 参考訳(メタデータ) (2023-05-22T17:47:41Z) - LERT: A Linguistically-motivated Pre-trained Language Model [67.65651497173998]
本稿では,3種類の言語特徴を学習する事前学習型言語モデルLERTを提案する。
我々は,中国における10のNLUタスクについて広範な実験を行い,LERTが大きな改善をもたらすことを示す実験結果を得た。
論文 参考訳(メタデータ) (2022-11-10T05:09:16Z) - Analyzing the Mono- and Cross-Lingual Pretraining Dynamics of
Multilingual Language Models [73.11488464916668]
本研究では,多言語事前学習プロセスのダイナミクスについて検討する。
我々は,XLM-Rプレトレーニング全体から抽出したチェックポイントを,一連の言語的タスクを用いて探索する。
分析の結果,より複雑なものよりも低レベルな言語スキルが得られ,早期に高い言語性能が得られることがわかった。
論文 参考訳(メタデータ) (2022-05-24T03:35:00Z) - Cross-lingual Lifelong Learning [53.06904052325966]
本稿では,言語間連続学習(CCL)の評価パラダイムを提案する。
マルチリンガルなシーケンシャルな学習を特に難しいものにするための洞察を提供する。
この分析の意味は、異なる言語間連続学習のデシダータを測り、バランスをとる方法のレシピを含む。
論文 参考訳(メタデータ) (2022-05-23T09:25:43Z) - Cross-Lingual Language Model Meta-Pretraining [21.591492094502424]
異なる学習段階における2つの能力について学習する言語間メタプレトレーニングを提案する。
本手法は一般化と言語間移動を両立させ,様々な言語にまたがる表現の整合性を向上する。
論文 参考訳(メタデータ) (2021-09-23T03:47:44Z) - A Massively Multilingual Analysis of Cross-linguality in Shared
Embedding Space [61.18554842370824]
言語間モデルでは、多くの異なる言語に対する表現は同じ空間に存在している。
我々は,bitext検索性能の形式で,言語間アライメントのタスクベース尺度を計算した。
我々はこれらのアライメント指標の潜在的な予測因子として言語的、準言語的、および訓練関連の特徴について検討する。
論文 参考訳(メタデータ) (2021-09-13T21:05:37Z) - Meta-Learning for Effective Multi-task and Multilingual Modelling [23.53779501937046]
タスクと言語間の相互作用を学ぶためのメタラーニング手法を提案する。
我々は、XTREME多言語ベンチマークデータセットから5つの異なるタスクと6つの異なる言語に関する実験を提示する。
論文 参考訳(メタデータ) (2021-01-25T19:30:26Z) - Cross-lingual Spoken Language Understanding with Regularized
Representation Alignment [71.53159402053392]
外部リソースを使わずに言語間で単語レベルの表現と文レベルの表現を整列する正規化手法を提案する。
言語間言語理解タスクの実験により、我々のモデルは、数ショットとゼロショットの両方のシナリオにおいて、最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2020-09-30T08:56:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。