論文の概要: RLOps: Development Life-cycle of Reinforcement Learning Aided Open RAN
- arxiv url: http://arxiv.org/abs/2111.06978v1
- Date: Fri, 12 Nov 2021 22:57:09 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-16 17:42:20.477467
- Title: RLOps: Development Life-cycle of Reinforcement Learning Aided Open RAN
- Title(参考訳): RLOps:オープンRANを活用した強化学習のライフサイクル開発
- Authors: Peizheng Li, Jonathan Thomas, Xiaoyang Wang, Ahmed Khalil, Abdelrahim
Ahmad, Rui Inacio, Shipra Kapoor, Arjun Parekh, Angela Doufexi, Arman
Shojaeifard, Robert Piechocki
- Abstract要約: この記事では、機械学習(ML)の原則、特にOpen RANスタックに関連する強化学習(RL)を紹介します。
開発ライフサイクルを通じてML/RLモデルが直面する課題を分類する。
モデル仕様,開発・蒸留,生産環境提供,運用監視,安全・セキュリティ,データエンジニアリングプラットフォームなど,RLOPSの基本部分について論じる。
- 参考スコア(独自算出の注目度): 4.279828770269723
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Radio access network (RAN) technologies continue to witness massive growth,
with Open RAN gaining the most recent momentum. In the O-RAN specifications,
the RAN intelligent controller (RIC) serves as an automation host. This article
introduces principles for machine learning (ML), in particular, reinforcement
learning (RL) relevant for the O-RAN stack. Furthermore, we review
state-of-the-art research in wireless networks and cast it onto the RAN
framework and the hierarchy of the O-RAN architecture. We provide a taxonomy of
the challenges faced by ML/RL models throughout the development life-cycle:
from the system specification to production deployment (data acquisition, model
design, testing and management, etc.). To address the challenges, we integrate
a set of existing MLOps principles with unique characteristics when RL agents
are considered. This paper discusses a systematic life-cycle model development,
testing and validation pipeline, termed: RLOps. We discuss all fundamental
parts of RLOps, which include: model specification, development and
distillation, production environment serving, operations monitoring,
safety/security and data engineering platform. Based on these principles, we
propose the best practices for RLOps to achieve an automated and reproducible
model development process.
- Abstract(参考訳): 無線アクセスネットワーク(RAN)技術は、Open RANが最新の勢いを増しているのを目撃し続けている。
O-RAN仕様では、RANインテリジェントコントローラ(RIC)が自動化ホストとして機能している。
本稿では,機械学習(ML)の原則,特にO-RANスタックに関連する強化学習(RL)を紹介する。
さらに、無線ネットワークにおける最先端の研究を概観し、RANフレームワークとO-RANアーキテクチャの階層構造に実装する。
本稿では,ML/RLモデルに直面する課題を,システム仕様から製品展開(データ取得,モデル設計,テスト,管理など)まで,開発ライフサイクルを通じて分類する。
これらの課題に対処するため、rlエージェントを検討する際に、既存のmlops原則とユニークな特徴を統合する。
本稿では,llopsと呼ばれるシステム的ライフサイクルモデル開発,テスト,検証パイプラインについて述べる。
モデル仕様,開発・蒸留,生産環境提供,運用監視,安全・セキュリティ,データエンジニアリングプラットフォームなど,ROPの基本部分について論じる。
これらの原則に基づいて,自動再現可能なモデル開発プロセスを実現するためのRLOPSのベストプラクティスを提案する。
関連論文リスト
- Developing Retrieval Augmented Generation (RAG) based LLM Systems from PDFs: An Experience Report [3.4632900249241874]
本稿では,PDF文書を主データ源とする検索拡張生成システム(RAG)の開発経験報告について述べる。
RAGアーキテクチャは、Large Language Models (LLM) の生成能力と情報検索の精度を組み合わせたものである。
この研究の実際的な意味は、様々な分野における生成AIシステムの信頼性を高めることである。
論文 参考訳(メタデータ) (2024-10-21T12:21:49Z) - RNR: Teaching Large Language Models to Follow Roles and Rules [153.6596303205894]
既存のIFT命令から多様な役割やルールを生成する自動データ生成パイプラインであるモデルを提案する。
このデータは、複雑なシステムプロンプトに従うモデルをトレーニングするために使用することができる。
我々のフレームワークは、大規模言語モデルにおける役割と規則に従う能力を大幅に改善します。
論文 参考訳(メタデータ) (2024-09-10T06:07:32Z) - Universal In-Context Approximation By Prompting Fully Recurrent Models [86.61942787684272]
RNN,LSTM,GRU,Linear RNN,Linear RNN,Line gated Architecturesは,汎用のインコンテキスト近似器として機能することを示す。
完全反復アーキテクチャにコンパイルするLSRLというプログラミング言語を導入する。
論文 参考訳(メタデータ) (2024-06-03T15:25:13Z) - Logical Specifications-guided Dynamic Task Sampling for Reinforcement Learning Agents [9.529492371336286]
強化学習(Reinforcement Learning、RL)は、人工エージェントが多様な振る舞いを学習できるようにするために大きな進歩を遂げてきた。
論理仕様誘導動的タスクサンプリング(LSTS)と呼ばれる新しい手法を提案する。
LSTSは、エージェントを初期状態から目標状態へ誘導するRLポリシーのセットを、ハイレベルなタスク仕様に基づいて学習する。
論文 参考訳(メタデータ) (2024-02-06T04:00:21Z) - SERL: A Software Suite for Sample-Efficient Robotic Reinforcement
Learning [85.21378553454672]
筆者らは,報酬の計算と環境のリセットを行う手法とともに,効率的なオフ・ポリティクス・ディープ・RL法を含むライブラリを開発した。
我々は,PCBボードアセンブリ,ケーブルルーティング,オブジェクトの移動に関するポリシを,非常に効率的な学習を実現することができることを発見した。
これらの政策は完全な成功率またはほぼ完全な成功率、摂動下でさえ極端な堅牢性を実現し、突発的な堅牢性回復と修正行動を示す。
論文 参考訳(メタデータ) (2024-01-29T10:01:10Z) - Forging Vision Foundation Models for Autonomous Driving: Challenges,
Methodologies, and Opportunities [59.02391344178202]
ビジョンファウンデーションモデル(VFM)は、幅広いAIアプリケーションのための強力なビルディングブロックとして機能する。
総合的なトレーニングデータの不足、マルチセンサー統合の必要性、多様なタスク固有のアーキテクチャは、VFMの開発に重大な障害をもたらす。
本稿では、自動運転に特化したVFMを鍛造する上で重要な課題について述べるとともに、今後の方向性を概説する。
論文 参考訳(メタデータ) (2024-01-16T01:57:24Z) - RLLTE: Long-Term Evolution Project of Reinforcement Learning [48.181733263496746]
本稿では,RLLTEについて紹介する。RLLTEは長期的進化であり,高度にモジュール化された,強化学習研究と応用のためのオープンソースフレームワークである。
トップノーチアルゴリズムの実装を提供するだけでなく、RLLTEはアルゴリズム開発のためのツールキットとしても機能する。
RLLTEは、RLエンジニアリングの基準を設定し、産業や学界に高い刺激を与えると期待されている。
論文 参考訳(メタデータ) (2023-09-28T12:30:37Z) - On Transforming Reinforcement Learning by Transformer: The Development
Trajectory [97.79247023389445]
Transformerは元々自然言語処理用に開発されたもので、コンピュータビジョンでも大きな成功を収めている。
既存の開発をアーキテクチャ拡張と軌道最適化の2つのカテゴリに分類する。
ロボット操作,テキストベースのゲーム,ナビゲーション,自律運転におけるTRLの主な応用について検討する。
論文 参考訳(メタデータ) (2022-12-29T03:15:59Z) - Actor-Critic Network for O-RAN Resource Allocation: xApp Design,
Deployment, and Analysis [3.8073142980733]
Open Radio Access Network (O-RAN)は、オープンネス、インテリジェンス、自動制御を可能にする新しいRANアーキテクチャを導入した。
RAN Intelligent Controller (RIC)は、RANコントローラの設計とデプロイのためのプラットフォームを提供する。
xAppsは、機械学習(ML)アルゴリズムを活用してほぼリアルタイムで動作することで、この責任を負うアプリケーションである。
論文 参考訳(メタデータ) (2022-09-26T19:12:18Z) - Sim2real for Reinforcement Learning Driven Next Generation Networks [4.29590751118341]
Reinforcement Learning (RL) モデルは、RAN関連多目的最適化問題の解決の鍵と見なされている。
主な理由の1つはシミュレーションと実環境の間のモデリングギャップであり、RLエージェントは実環境に不適合なシミュレーションによって訓練される可能性がある。
この記事では、Open RAN(O-RAN)のコンテキストにおけるsim2realチャレンジについて述べます。
実環境におけるシミュレーション訓練されたRLモデルの障害モードを実証し、実証するために、いくつかのユースケースが提示される。
論文 参考訳(メタデータ) (2022-06-08T12:40:24Z) - ColO-RAN: Developing Machine Learning-based xApps for Open RAN
Closed-loop Control on Programmable Experimental Platforms [22.260874168813647]
ColO-RANは、ソフトウェア定義のRadios-in-the-loopを備えた、初めて一般公開された大規模O-RANテストフレームワークである。
ColO-RANは、O-RANコンポーネント、プログラム可能なベースステーション、および"無線データファクトリ"を使用した大規模ML研究を可能にする
DRLをベースとした適応制御の利点と課題を明らかにする。
論文 参考訳(メタデータ) (2021-12-17T15:14:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。