論文の概要: Multimodal Generalized Zero Shot Learning for Gleason Grading using
Self-Supervised Learning
- arxiv url: http://arxiv.org/abs/2111.07646v1
- Date: Mon, 15 Nov 2021 10:14:11 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-17 00:45:07.748520
- Title: Multimodal Generalized Zero Shot Learning for Gleason Grading using
Self-Supervised Learning
- Title(参考訳): 自己監督学習を用いたグリーソングレーディングのためのマルチモーダル一般化ゼロショット学習
- Authors: Dwarikanath Mahapatra
- Abstract要約: 前立腺癌の正確な診断には,病理組織像からのグリースングレーディングが不可欠である。
本稿では,非干渉的かつ容易に取得可能なMR画像からGleasonグレードを予測する手法を提案する。
- 参考スコア(独自算出の注目度): 4.898744396854313
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gleason grading from histopathology images is essential for accurate prostate
cancer (PCa) diagnosis. Since such images are obtained after invasive tissue
resection quick diagnosis is challenging under the existing paradigm. We
propose a method to predict Gleason grades from magnetic resonance (MR) images
which are non-interventional and easily acquired. We solve the problem in a
generalized zero-shot learning (GZSL) setting since we may not access training
images of every disease grade. Synthetic MRI feature vectors of unseen grades
(classes) are generated by exploiting Gleason grades' ordered nature through a
conditional variational autoencoder (CVAE) incorporating self-supervised
learning. Corresponding histopathology features are generated using cycle GANs,
and combined with MR features to predict Gleason grades of test images.
Experimental results show our method outperforms competing feature generating
approaches for GZSL, and comes close to performance of fully supervised
methods.
- Abstract(参考訳): 病理組織像からのグリーソンの診断は, 前立腺癌 (pca) の診断に必須である。
このような画像は浸潤組織切除後に得られるため,既存のパラダイムでは迅速な診断が困難である。
本稿では,非干渉的かつ容易に取得可能なMR画像からGleasonグレードを予測する手法を提案する。
一般的なゼロショット学習(GZSL)では,すべての疾患の訓練画像にアクセスできないため,この問題を解決している。
自己教師型学習を取り入れた条件付き変分オートエンコーダ(CVAE)を用いて、Gleasonグレードの順序性を利用して、未確認グレード(クラス)の合成MRI特徴ベクトルを生成する。
対応する病理組織学的特徴をサイクルganを用いて生成し、mr特徴と組み合わせてテスト画像のグリーソングレードを予測する。
実験の結果,提案手法はGZSLの競合する特徴生成手法よりも優れており,完全教師付き手法の性能に近づいた。
関連論文リスト
- Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
磁気共鳴イメージング(MRI)のクロスモーダル増強と、同じ組織サンプルに基づく顕微鏡イメージングが期待できる。
コンディショナル・ジェネレーティブ・逆境ネットワーク (cGAN) アーキテクチャを用いて, コーパス・カロサムのMRI画像から顕微鏡組織像を生成する方法を検討した。
論文 参考訳(メタデータ) (2023-10-16T13:58:53Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - GraVIS: Grouping Augmented Views from Independent Sources for
Dermatology Analysis [52.04899592688968]
皮膚科画像から自己教師付き特徴を学習するために特に最適化されたGraVISを提案する。
GraVISは、病変のセグメンテーションと疾患分類のタスクにおいて、転送学習と自己教師型学習を著しく上回っている。
論文 参考訳(メタデータ) (2023-01-11T11:38:37Z) - Weakly-Supervised Deep Learning Model for Prostate Cancer Diagnosis and
Gleason Grading of Histopathology Images [2.547129771651519]
本稿では,前立腺癌学級を分類する弱教師付きアルゴリズムを提案する。
提案アルゴリズムは, 組織像における識別領域の抽出, 画像の表現, 画像のグリーソングレードへの分類の3段階からなる。
その結果,Gleason grading タスクの精度,F1スコア,Cohen-Kappa の両面での最先端性能が得られた。
論文 参考訳(メタデータ) (2022-12-25T03:07:52Z) - FREE: Feature Refinement for Generalized Zero-Shot Learning [86.41074134041394]
汎用ゼロショット学習(GZSL)は、視覚-意味的領域ギャップと目に見えないバイアスの問題を克服するために多くの努力を払って、大きな進歩を遂げた。
既存のほとんどのメソッドはImageNetでトレーニングされた機能抽出モデルを直接使用しており、ImageNetとGZSLベンチマークのデータセット間のバイアスを無視している。
本稿では,この問題に対処するために,汎用ゼロショット学習(FREE)のための特徴改善という,シンプルで効果的なGZSL法を提案する。
論文 参考訳(メタデータ) (2021-07-29T08:11:01Z) - WeGleNet: A Weakly-Supervised Convolutional Neural Network for the
Semantic Segmentation of Gleason Grades in Prostate Histology Images [1.52819437883813]
本研究では,前立腺組織における局所的ながんパターンを,訓練中のグローバルレベルGleasonスコアのみを用いて検出する深層学習システムを提案する。
検証コホートにおける癌パターンの画素レベルの予測のために,コーエンの2次カッパ(k)を0.67で取得した。
我々は、Gleasonグレードのセマンティックセグメンテーションのためのモデル性能を、テストコホートにおける教師付き最先端アーキテクチャと比較した。
論文 参考訳(メタデータ) (2021-05-21T16:27:16Z) - Self-learning for weakly supervised Gleason grading of local patterns [6.97280833203187]
本稿では,自己学習CNNに基づく弱教師付きディープラーニングモデルを提案し,パッチレベルのパターンと生検レベルのスコアリングの両方を正確に行う。
提案手法はパッチレベルのGleasonグレーディングにおいて,大きなマージン差で教師付き手法よりも優れていることを実証的に実証した。
論文 参考訳(メタデータ) (2021-05-21T15:39:50Z) - Automated Prostate Cancer Diagnosis Based on Gleason Grading Using
Convolutional Neural Network [12.161266795282915]
そこで本研究では,前立腺癌(PCa)の完全分類のための畳み込みニューラルネットワーク(CNN)を用いた自動分類法を提案する。
Patch-Based Image Reconstruction (PBIR) と呼ばれるデータ拡張手法が提案され,WSIの高分解能化と多様性の向上が図られた。
対象データセットへの事前学習モデルの適応性を高めるために,分布補正モジュールを開発した。
論文 参考訳(メタデータ) (2020-11-29T06:42:08Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Gleason Grading of Histology Prostate Images through Semantic
Segmentation via Residual U-Net [60.145440290349796]
前立腺癌の最終診断は、病理学者による前立腺生検におけるGleasonパターンの視覚的検出に基づいている。
コンピュータ支援診断システムは、組織内のがんのパターンを分類し分類することができる。
この研究の方法論的核心は、がん組織を分節できる残留ブロックで修正された画像分割のためのU-Net畳み込みニューラルネットワークである。
論文 参考訳(メタデータ) (2020-05-22T19:49:10Z) - Gleason Score Prediction using Deep Learning in Tissue Microarray Image [15.959329921417618]
我々はGleason 2019 Challengeデータセットを使用して、組織マイクロアレイ(TMA)画像を分割する畳み込みニューラルネットワーク(CNN)モデルを構築しました。
プレトレーニングした前立腺セグメンテーションモデルを用いて,Gleasonグレードセグメンテーションの精度を向上した。
このモデルはテストコホートで平均75.6%のDiceを達成し、Gleason 2019 Challengeで4位となり、コーエンのカッパとf1スコアを組み合わせたスコアは0.778となった。
論文 参考訳(メタデータ) (2020-05-11T07:00:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。