論文の概要: CLARA: A Constrained Reinforcement Learning Based Resource Allocation
Framework for Network Slicing
- arxiv url: http://arxiv.org/abs/2111.08397v1
- Date: Tue, 16 Nov 2021 11:54:09 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-17 16:22:15.016248
- Title: CLARA: A Constrained Reinforcement Learning Based Resource Allocation
Framework for Network Slicing
- Title(参考訳): CLARA: ネットワークスライシングのための制約付き強化学習に基づくリソース割り当てフレームワーク
- Authors: Yongshuai Liu, Jiaxin Ding, Zhi-Li Zhang, Xin Liu
- Abstract要約: ネットワークスライシングは,5Gおよび将来のネットワークにおける資源利用のための有望なソリューションとして提案されている。
モデルや隠れ構造を知らずにCMDP(Constrained Markov Decision Process)として問題を定式化する。
本稿では、制約付き強化LeArningに基づくリソース割当アルゴリズムであるCLARAを用いて、この問題を解決することを提案する。
- 参考スコア(独自算出の注目度): 19.990451009223573
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As mobile networks proliferate, we are experiencing a strong diversification
of services, which requires greater flexibility from the existing network.
Network slicing is proposed as a promising solution for resource utilization in
5G and future networks to address this dire need. In network slicing, dynamic
resource orchestration and network slice management are crucial for maximizing
resource utilization. Unfortunately, this process is too complex for
traditional approaches to be effective due to a lack of accurate models and
dynamic hidden structures. We formulate the problem as a Constrained Markov
Decision Process (CMDP) without knowing models and hidden structures.
Additionally, we propose to solve the problem using CLARA, a Constrained
reinforcement LeArning based Resource Allocation algorithm. In particular, we
analyze cumulative and instantaneous constraints using adaptive interior-point
policy optimization and projection layer, respectively. Evaluations show that
CLARA clearly outperforms baselines in resource allocation with service demand
guarantees.
- Abstract(参考訳): モバイルネットワークが普及するにつれ、サービスの多様化が進み、既存のネットワークからの柔軟性が向上しています。
ネットワークスライシングは、5gと将来のネットワークにおけるリソース利用の有望なソリューションとして提案されている。
ネットワークスライシングでは、動的リソースオーケストレーションとネットワークスライス管理が資源利用の最大化に不可欠である。
残念ながら、このプロセスは、正確なモデルと動的な隠れ構造がないため、従来のアプローチが効果的になるには複雑すぎる。
モデルや隠れ構造を知らずにCMDP(Constrained Markov Decision Process)として問題を定式化する。
さらに、制約付き強化LeArningに基づくリソース割当アルゴリズムであるCLARAを用いて、この問題を解決することを提案する。
特に,適応型内点ポリシー最適化と投影層を用いて,累積制約と瞬時制約をそれぞれ解析する。
評価の結果,CLARAはリソース割り当てにおいて,サービス要求の保証とともに明らかにベースラインを上回ります。
関連論文リスト
- Joint Admission Control and Resource Allocation of Virtual Network Embedding via Hierarchical Deep Reinforcement Learning [69.00997996453842]
本稿では,仮想ネットワークの埋め込みにおいて,入出力制御と資源配分を併用して学習する深層強化学習手法を提案する。
HRL-ACRAは,受入率と長期平均収益の両面で,最先端のベースラインを上回っていることを示す。
論文 参考訳(メタデータ) (2024-06-25T07:42:30Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
本稿では,Vehicular Edge Computingにおける共同DNNパーティショニング,タスクオフロード,リソース割り当ての問題を定式化する。
我々の目標は、時間とともにシステムの安定性を保証しながら、DNNベースのタスク完了時間を最小化することである。
拡散モデルの革新的利用を取り入れたマルチエージェント拡散に基づく深層強化学習(MAD2RL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-11T06:31:03Z) - Fast and Scalable Network Slicing by Integrating Deep Learning with
Lagrangian Methods [8.72339110741777]
ネットワークスライシングは、多種多様なサービスを効率的にサポートするために、5G以上の重要なテクニックである。
ディープラーニングモデルは、動的スライシング構成に対する限定的な一般化と適応性に悩まされる。
本稿では,制約付き最適化手法とディープラーニングモデルを統合する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-22T07:19:16Z) - Multi Agent DeepRL based Joint Power and Subchannel Allocation in IAB
networks [0.0]
統合アクセスとバックハウリング(IRL)は、将来の世代におけるより高いデータレートに対する前例のない要求を満たすための、実行可能なアプローチである。
本稿では,分数ノードに付随する巨大なアクション空間の問題を,Deep Q-Learning Networkを用いて処理する方法を示す。
論文 参考訳(メタデータ) (2023-08-31T21:30:25Z) - Attention-based Open RAN Slice Management using Deep Reinforcement
Learning [6.177038245239758]
本稿では,O-RAN分散化モジュールと分散エージェント協調を利用した,革新的アテンションベースディープRL(ADRL)技術を提案する。
シミュレーションの結果,他のDRLベースライン法と比較してネットワーク性能が大幅に向上した。
論文 参考訳(メタデータ) (2023-06-15T20:37:19Z) - Evolutionary Deep Reinforcement Learning for Dynamic Slice Management in
O-RAN [11.464582983164991]
新しいオープン無線アクセスネットワーク(O-RAN)は、フレキシブルな設計、分離された仮想およびプログラマブルなコンポーネント、インテリジェントクローズループ制御などの特徴を区別する。
O-RANスライシングは、状況の変化に直面したネットワーク品質保証(QoS)のための重要な戦略として検討されている。
本稿では,ネットワークスライスを知的に管理できる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-08-30T17:00:53Z) - Edge Rewiring Goes Neural: Boosting Network Resilience via Policy
Gradient [62.660451283548724]
ResiNetは、さまざまな災害や攻撃に対する回復力のあるネットワークトポロジを発見するための強化学習フレームワークである。
ResiNetは複数のグラフに対してほぼ最適のレジリエンス向上を実現し,ユーティリティのバランスを保ちながら,既存のアプローチに比べて大きなマージンを持つことを示す。
論文 参考訳(メタデータ) (2021-10-18T06:14:28Z) - Dynamic RAN Slicing for Service-Oriented Vehicular Networks via
Constrained Learning [40.5603189901241]
品質の異なる車両用インターネット(IoV)サービスにおける無線アクセスネットワーク(RAN)スライシング問題について検討する。
無線スペクトルと演算資源を動的に割り当てる動的RANスライシングフレームワークを提案する。
RAWSは,ベンチマークと比較すると,要求を高い確率で満たしながら,システムコストを効果的に削減できることを示す。
論文 参考訳(メタデータ) (2020-12-03T15:08:38Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
本稿では,自由空間光学(FSO)通信におけるチャネルフェージング効果の緩和のための資源配分の一般的な問題について検討する。
本フレームワークでは,FSO資源割り当て問題を解決する2つのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-27T17:38:51Z) - Resource Allocation via Graph Neural Networks in Free Space Optical
Fronthaul Networks [119.81868223344173]
本稿では,自由空間光(FSO)フロントホールネットワークにおける最適資源割り当てについて検討する。
我々は、FSOネットワーク構造を利用するために、ポリシーパラメータ化のためのグラフニューラルネットワーク(GNN)を検討する。
本アルゴリズムは,システムモデルに関する知識が不要なモデルフリーでGNNを訓練するために開発された。
論文 参考訳(メタデータ) (2020-06-26T14:20:48Z) - Deep Adaptive Inference Networks for Single Image Super-Resolution [72.7304455761067]
シングルイメージ超解像(SISR)は、ディープ畳み込みニューラルネットワーク(CNN)の展開により、近年大きく進歩している。
本稿では,深部SISR(AdaDSR)の適応型推論ネットワークを活用することで,この問題に対処する。
我々のAdaDSRは、SISRモデルをバックボーンとし、画像の特徴とリソース制約を入力として取り、ローカルネットワーク深さのマップを予測する軽量アダプタモジュールを備える。
論文 参考訳(メタデータ) (2020-04-08T10:08:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。