論文の概要: Unified End-to-End V2X Cooperative Autonomous Driving
- arxiv url: http://arxiv.org/abs/2405.03971v1
- Date: Tue, 7 May 2024 03:01:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 15:28:42.127030
- Title: Unified End-to-End V2X Cooperative Autonomous Driving
- Title(参考訳): 統一エンドツーエンドV2X協調自動運転
- Authors: Zhiwei Li, Bozhen Zhang, Lei Yang, Tianyu Shen, Nuo Xu, Ruosen Hao, Weiting Li, Tao Yan, Huaping Liu,
- Abstract要約: UniE2EV2Xは、V2Xに統合されたエンドツーエンドの自動運転システムで、主要な駆動モジュールを統合ネットワーク内で統合する。
このフレームワークは変形可能な注意ベースのデータ融合戦略を採用し、車とインフラの協調を効果的に促進する。
We implement the UniE2EV2X framework on the challenge DeepAccident, a simulation dataset designed for V2X collaborative driving。
- 参考スコア(独自算出の注目度): 21.631099800753795
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: V2X cooperation, through the integration of sensor data from both vehicles and infrastructure, is considered a pivotal approach to advancing autonomous driving technology. Current research primarily focuses on enhancing perception accuracy, often overlooking the systematic improvement of accident prediction accuracy through end-to-end learning, leading to insufficient attention to the safety issues of autonomous driving. To address this challenge, this paper introduces the UniE2EV2X framework, a V2X-integrated end-to-end autonomous driving system that consolidates key driving modules within a unified network. The framework employs a deformable attention-based data fusion strategy, effectively facilitating cooperation between vehicles and infrastructure. The main advantages include: 1) significantly enhancing agents' perception and motion prediction capabilities, thereby improving the accuracy of accident predictions; 2) ensuring high reliability in the data fusion process; 3) superior end-to-end perception compared to modular approaches. Furthermore, We implement the UniE2EV2X framework on the challenging DeepAccident, a simulation dataset designed for V2X cooperative driving.
- Abstract(参考訳): V2Xの協力は、車両とインフラの両方からのセンサーデータを統合することで、自動運転技術の進歩への重要なアプローチと考えられている。
現在の研究は、主に知覚精度の向上に焦点を当てており、しばしばエンドツーエンド学習による事故予測精度の体系的な改善を見越して、自律運転の安全性問題への注意が不足している。
この課題に対処するため,本研究では,V2X統合エンドツーエンド自動運転システムであるUniE2EV2Xフレームワークを導入し,キー駆動モジュールを統一ネットワーク内で統合する。
このフレームワークは変形可能な注意ベースのデータ融合戦略を採用し、車とインフラの協調を効果的に促進する。
主な利点は以下のとおりである。
1) エージェントの認識及び動作予測能力を大幅に向上させ、事故予測の精度を向上させる。
2) データ融合プロセスにおいて高い信頼性を確保すること。
3) モジュラーアプローチに比べてエンドツーエンドの知覚が優れている。
さらに,V2X協調運転のためのシミュレーションデータセットであるDeepAccidentに,UniE2EV2Xフレームワークを実装した。
関連論文リスト
- V2X-VLM: End-to-End V2X Cooperative Autonomous Driving Through Large Vision-Language Models [13.716889927164383]
本稿では、V2Xシステムと大型ビジョン言語モデル(VLM)を備えた、革新的なE2E車両・インフラ協調自動運転(VICAD)フレームワークであるV2X-VLMを紹介する。
V2X-VLMは、車両に搭載されたカメラ、インフラセンサー、およびテキスト情報からの多モデルデータを統合することで、状況認識、意思決定、究極の軌道計画を強化するように設計されている。
DAIR-V2Xデータセットの評価は、V2X-VLMが最先端の協調運転法より優れていることを示している。
論文 参考訳(メタデータ) (2024-08-17T16:42:13Z) - Towards Collaborative Autonomous Driving: Simulation Platform and End-to-End System [35.447617290190294]
自動運転車(V2X-AD)は、より安全な運転ソリューションを提供する大きな可能性を秘めている。
本稿では,協調自動運転のための総合シミュレーションプラットフォームであるV2Xverseを紹介する。
私たちは、新しいエンドツーエンドのコラボレーティブドライブシステムであるCoDrivingを紹介します。
論文 参考訳(メタデータ) (2024-04-15T06:33:32Z) - End-to-End Autonomous Driving through V2X Cooperation [23.44597411612664]
先駆的な協調自動運転フレームワークUniV2Xを紹介する。
UniV2Xは様々なビューにまたがるすべてのキー駆動モジュールをシームレスに統合ネットワークに統合する。
論文 参考訳(メタデータ) (2024-03-31T15:22:11Z) - V2X Cooperative Perception for Autonomous Driving: Recent Advances and Challenges [32.11627955649814]
車両間協調認識(V2X)により、車両は認識データを共有でき、状況認識を高め、個々の車両の知覚能力の限界を克服することができる。
V2X CPは、認識範囲の拡大、精度の向上、複雑な環境下での自動運転車の意思決定と制御能力の向上に不可欠である。
本稿では、V2X CPの最近の進歩を包括的に調査し、様々なコラボレーション戦略にまたがるCPプロセスの数学的モデルを紹介する。
論文 参考訳(メタデータ) (2023-10-05T13:19:48Z) - V2X-Lead: LiDAR-based End-to-End Autonomous Driving with
Vehicle-to-Everything Communication Integration [4.166623313248682]
本稿では,V2X(Vine-to-Everything)通信を統合したLiDARを用いたエンドツーエンド自動運転手法を提案する。
提案手法は,搭載したLiDARセンサとV2X通信データを融合させることにより,不完全な部分的観測を処理することを目的としている。
論文 参考訳(メタデータ) (2023-09-26T20:26:03Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
本稿では,車間認識を用いたエンドツーエンド学習モデルであるCOOPERNAUTを紹介する。
われわれのAutoCastSim実験は、我々の協調知覚駆動モデルが平均成功率を40%向上させることを示唆している。
論文 参考訳(メタデータ) (2022-05-04T17:55:12Z) - V2X-ViT: Vehicle-to-Everything Cooperative Perception with Vision
Transformer [58.71845618090022]
我々は、道路上のエージェント間で情報を融合するために、V2X-ViTという全体論的アテンションモデルを構築した。
V2X-ViTは異質なマルチエージェント自己アテンションとマルチスケールウィンドウ自己アテンションの交互層から構成される。
我々のアプローチを検証するために、我々は大規模なV2X知覚データセットを作成します。
論文 参考訳(メタデータ) (2022-03-20T20:18:25Z) - An Energy Consumption Model for Electrical Vehicle Networks via Extended
Federated-learning [50.85048976506701]
本稿では,フェデレートラーニングモデルに基づく不安度を測る新しい手法を提案する。
バッテリー消費を推定し、車両ネットワークにエネルギー効率の高いルートプランニングを提供する。
論文 参考訳(メタデータ) (2021-11-13T15:03:44Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
本稿では,AVの最適決定を支援するために,マルコフ決定プロセス(MDP)に基づくインテリジェントな最適化フレームワークを提案する。
そこで我々は,近年の深層強化学習技術を活用した効果的な学習アルゴリズムを開発し,AVの最適方針を見出す。
提案手法は,従来の深部強化学習手法と比較して,AVによる障害物ミス検出確率を最大67%削減することを示す。
論文 参考訳(メタデータ) (2021-05-28T08:45:37Z) - Efficient and Robust LiDAR-Based End-to-End Navigation [132.52661670308606]
我々は,LiDARをベースとした効率的なエンドツーエンドナビゲーションフレームワークを提案する。
本稿では,スパース畳み込みカーネル最適化とハードウェア対応モデル設計に基づくFast-LiDARNetを提案する。
次に,単一の前方通過のみから予測の不確かさを直接推定するハイブリッド・エビデンシャル・フュージョンを提案する。
論文 参考訳(メタデータ) (2021-05-20T17:52:37Z) - Value Function is All You Need: A Unified Learning Framework for Ride
Hailing Platforms [57.21078336887961]
DiDi、Uber、Lyftなどの大型配車プラットフォームは、都市内の数万台の車両を1日中数百万の乗車要求に接続している。
両課題に対処するための統合価値に基づく動的学習フレームワーク(V1D3)を提案する。
論文 参考訳(メタデータ) (2021-05-18T19:22:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。