Reducing the Long Tail Losses in Scientific Emulations with Active
Learning
- URL: http://arxiv.org/abs/2111.08498v1
- Date: Mon, 15 Nov 2021 09:02:00 GMT
- Title: Reducing the Long Tail Losses in Scientific Emulations with Active
Learning
- Authors: Yi Heng Lim, Muhammad Firmansyah Kasim
- Abstract summary: In this work, we leveraged an active learning approach called core-set selection to actively select data, per a pre-defined budget, to be labelled for training.
We tested on two case studies in different fields, namely galaxy halo occupation distribution modelling in astrophysics and x-ray emission spectroscopy in plasma physics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep-learning-based models are increasingly used to emulate scientific
simulations to accelerate scientific research. However, accurate, supervised
deep learning models require huge amount of labelled data, and that often
becomes the bottleneck in employing neural networks. In this work, we leveraged
an active learning approach called core-set selection to actively select data,
per a pre-defined budget, to be labelled for training. To further improve the
model performance and reduce the training costs, we also warm started the
training using a shrink-and-perturb trick. We tested on two case studies in
different fields, namely galaxy halo occupation distribution modelling in
astrophysics and x-ray emission spectroscopy in plasma physics, and the results
are promising: we achieved competitive overall performance compared to using a
random sampling baseline, and more importantly, successfully reduced the larger
absolute losses, i.e. the long tail in the loss distribution, at virtually no
overhead costs.
Related papers
- Optimizing Dense Feed-Forward Neural Networks [0.0]
We propose a novel feed-forward neural network constructing method based on pruning and transfer learning.
Our approach can compress the number of parameters by more than 70%.
We also evaluate the transfer learning level comparing the refined model and the original one training from scratch a neural network.
arXiv Detail & Related papers (2023-12-16T23:23:16Z) - Gradual Optimization Learning for Conformational Energy Minimization [69.36925478047682]
Gradual Optimization Learning Framework (GOLF) for energy minimization with neural networks significantly reduces the required additional data.
Our results demonstrate that the neural network trained with GOLF performs on par with the oracle on a benchmark of diverse drug-like molecules.
arXiv Detail & Related papers (2023-11-05T11:48:08Z) - Diffusion-Model-Assisted Supervised Learning of Generative Models for
Density Estimation [10.793646707711442]
We present a framework for training generative models for density estimation.
We use the score-based diffusion model to generate labeled data.
Once the labeled data are generated, we can train a simple fully connected neural network to learn the generative model in the supervised manner.
arXiv Detail & Related papers (2023-10-22T23:56:19Z) - Solving Large-scale Spatial Problems with Convolutional Neural Networks [88.31876586547848]
We employ transfer learning to improve training efficiency for large-scale spatial problems.
We propose that a convolutional neural network (CNN) can be trained on small windows of signals, but evaluated on arbitrarily large signals with little to no performance degradation.
arXiv Detail & Related papers (2023-06-14T01:24:42Z) - Post-training Model Quantization Using GANs for Synthetic Data
Generation [57.40733249681334]
We investigate the use of synthetic data as a substitute for the calibration with real data for the quantization method.
We compare the performance of models quantized using data generated by StyleGAN2-ADA and our pre-trained DiStyleGAN, with quantization using real data and an alternative data generation method based on fractal images.
arXiv Detail & Related papers (2023-05-10T11:10:09Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
We introduce Learning controllable Adaptive simulation for Multi-resolution Physics (LAMP) as the first full deep learning-based surrogate model.
LAMP consists of a Graph Neural Network (GNN) for learning the forward evolution, and a GNN-based actor-critic for learning the policy of spatial refinement and coarsening.
We demonstrate that our LAMP outperforms state-of-the-art deep learning surrogate models, and can adaptively trade-off computation to improve long-term prediction error.
arXiv Detail & Related papers (2023-05-01T23:20:27Z) - Large Deviations for Accelerating Neural Networks Training [5.864710987890994]
We propose the LAD Improved Iterative Training (LIIT), a novel training approach for ANN using large deviations principle.
The LIIT approach uses a Modified Training Sample (MTS) that is generated and iteratively updated using a LAD anomaly score based sampling strategy.
The MTS sample is designed to be well representative of the training data by including most anomalous of the observations in each class.
arXiv Detail & Related papers (2023-03-02T04:14:05Z) - Continual learning autoencoder training for a particle-in-cell
simulation via streaming [52.77024349608834]
upcoming exascale era will provide a new generation of physics simulations with high resolution.
These simulations will have a high resolution, which will impact the training of machine learning models since storing a high amount of simulation data on disk is nearly impossible.
This work presents an approach that trains a neural network concurrently to a running simulation without data on a disk.
arXiv Detail & Related papers (2022-11-09T09:55:14Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
Lithography modeling is a crucial problem in chip design to ensure a chip design mask is manufacturable.
Recent developments in machine learning have provided alternative solutions in replacing the time-consuming lithography simulations with deep neural networks.
We propose a litho-aware data augmentation framework to resolve the dilemma of limited data and improve the machine learning model performance.
arXiv Detail & Related papers (2022-10-27T20:53:39Z) - Training Efficiency and Robustness in Deep Learning [2.6451769337566406]
We study approaches to improve the training efficiency and robustness of deep learning models.
We find that prioritizing learning on more informative training data increases convergence speed and improves generalization performance on test data.
We show that a redundancy-aware modification to the sampling of training data improves the training speed and develops an efficient method for detecting the diversity of training signal.
arXiv Detail & Related papers (2021-12-02T17:11:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.