論文の概要: A Data-Driven Approach for Linear and Nonlinear Damage Detection Using
Variational Mode Decomposition and GARCH Model
- arxiv url: http://arxiv.org/abs/2111.08620v1
- Date: Tue, 16 Nov 2021 17:01:26 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-17 17:19:49.230972
- Title: A Data-Driven Approach for Linear and Nonlinear Damage Detection Using
Variational Mode Decomposition and GARCH Model
- Title(参考訳): 変分モード分解とgarchモデルを用いた線形および非線形損傷検出のためのデータ駆動アプローチ
- Authors: Vahid Reza Gharehbaghi, Hashem Kalbkhani, Ehsan Noroozinejad Farsangi,
T.Y. Yang, Seyedali Mirjalili
- Abstract要約: 信号処理と特徴抽出のための変分モード分解(VMD)と一般化された自己回帰条件不整合性(GARCH)モデルをデプロイする。
提案手法の性能を線形および非線形損傷評価の2つの実験モデルで評価した。
- 参考スコア(独自算出の注目度): 13.183011809131235
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this article, an original data-driven approach is proposed to detect both
linear and nonlinear damage in structures using output-only responses. The
method deploys variational mode decomposition (VMD) and a generalised
autoregressive conditional heteroscedasticity (GARCH) model for signal
processing and feature extraction. To this end, VMD decomposes the response
signals into intrinsic mode functions (IMFs). Afterwards, the GARCH model is
utilised to represent the statistics of IMFs. The model coefficients of IMFs
construct the primary feature vector. Kernel-based principal component analysis
(PCA) and linear discriminant analysis (LDA) are utilised to reduce the
redundancy of the primary features by mapping them to the new feature space.
The informative features are then fed separately into three supervised
classifiers, namely support vector machine (SVM), k-nearest neighbour (kNN),
and fine tree. The performance of the proposed method is evaluated on two
experimentally scaled models in terms of linear and nonlinear damage
assessment. Kurtosis and ARCH tests proved the compatibility of the GARCH
model.
- Abstract(参考訳): 本稿では,出力のみ応答を用いた構造物の線形損傷と非線形損傷の両方を検出するために,オリジナルのデータ駆動手法を提案する。
信号処理と特徴抽出のための変分モード分解(VMD)と一般化された自己回帰条件不整合性(GARCH)モデルをデプロイする。
この目的のために、VMDは応答信号を固有のモード関数(IMF)に分解する。
その後、GARCHモデルはIMFの統計を表すために使用される。
IMFのモデル係数は一次特徴ベクトルを構成する。
カーネルベース主成分分析 (PCA) と線形判別分析 (LDA) を用いて, 特徴空間にマッピングすることで, 特徴量の冗長性を低減する。
情報的特徴は3つの教師付き分類器、すなわちサポートベクターマシン(SVM)、k-nearest neighbor(kNN)、ファインツリーに別々に供給される。
線形および非線形損傷評価の2つの実験モデルを用いて,提案手法の性能評価を行った。
クルトーシスとARCHテストはGARCHモデルの互換性を証明した。
関連論文リスト
- Induced Covariance for Causal Discovery in Linear Sparse Structures [55.2480439325792]
因果モデルでは、観測データから変数間の因果関係を解き明かそうとしている。
本稿では,変数が線形に疎結合な関係を示す設定のための新しい因果探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-02T04:01:38Z) - DA-Flow: Dual Attention Normalizing Flow for Skeleton-based Video Anomaly Detection [52.74152717667157]
本稿では,DAM(Dual Attention Module)と呼ばれる軽量モジュールを提案する。
フレームアテンション機構を使用して、最も重要なフレームを識別し、スケルトンアテンション機構を使用して、最小パラメータとフロップで固定されたパーティション間の広範な関係をキャプチャする。
論文 参考訳(メタデータ) (2024-06-05T06:18:03Z) - Fusing Dictionary Learning and Support Vector Machines for Unsupervised Anomaly Detection [1.5999407512883508]
本稿では,OC-SVMとDL残差関数を1つの合成対象に統一する新たな異常検出モデルを提案する。
両方の目的をカーネル関数の使用を可能にするより一般的な設定に拡張する。
論文 参考訳(メタデータ) (2024-04-05T12:41:53Z) - Preventing Model Collapse in Gaussian Process Latent Variable Models [11.45681373843122]
本稿では,線形フーリエVMのレンズによるモデル崩壊に対する射影分散の影響を理論的に検討する。
我々は、スペクトル混合(SM)カーネルと微分可能乱数特徴(RFF)カーネル近似を統合することにより、カーネルの柔軟性が不十分なため、モデル崩壊に取り組む。
提案したVMは、アドバイスRFLVMと呼ばれ、さまざまなデータセットで評価され、さまざまな競合モデルよりも一貫して優れています。
論文 参考訳(メタデータ) (2024-04-02T06:58:41Z) - Solving Inverse Problems with Model Mismatch using Untrained Neural Networks within Model-based Architectures [14.551812310439004]
モデルベースアーキテクチャでは,各インスタンスの計測領域におけるデータの一貫性を一致させるために,トレーニングされていないフォワードモデル残差ブロックを導入する。
提案手法は,パラメータ感受性が低く,追加データを必要としない統一解を提供し,前方モデルの同時適用と1パスの再構成を可能にする。
論文 参考訳(メタデータ) (2024-03-07T19:02:13Z) - Weakly supervised covariance matrices alignment through Stiefel matrices
estimation for MEG applications [64.20396555814513]
本稿では,Mixing Model Stiefel Adaptation (MSA)と呼ばれる時系列データに対する新しいドメイン適応手法を提案する。
我々は、ドメイン間の等価な信号分散とペアの対応を確立することにより、ターゲット領域における豊富なラベルのないデータを利用して効果的な予測を行う。
MSAは、Cam-CANデータセットのMEG信号を用いて、タスクの変動を伴う脳年齢回帰の最近の手法より優れている。
論文 参考訳(メタデータ) (2024-01-24T19:04:49Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
異なる因果発見は、データ生成プロセスを一連のモジュールに分解するために提案されている。
このようなモジュラニューラル因果モデルの一般化と適応性能について検討する。
我々の分析では、モジュラーニューラル因果モデルが、低データレギュレーションにおけるゼロおよび少数ショットの適応において、他のモデルよりも優れていることを示している。
論文 参考訳(メタデータ) (2022-06-09T17:12:32Z) - A connection between the pattern classification problem and the General
Linear Model for statistical inference [0.2320417845168326]
両方のアプローチ、すなわち。
GLM および LRM は、異なったドメイン、観察およびラベル ドメインに適用します。
より洗練された予測アルゴリズムに基づく統計的検査を導出する。
MLEベースの推論は、残留スコアを採用し、実際の(実際の)エラーのより良い推定を計算するために上界を含む。
論文 参考訳(メタデータ) (2020-12-16T12:26:26Z) - Derivative-Based Koopman Operators for Real-Time Control of Robotic
Systems [14.211417879279075]
本稿では, モデル誤差を拘束する非線形力学をデータ駆動で同定するための一般化可能な手法を提案する。
クープマン演算子に基づく線形表現を構築し,テイラー級数精度解析を用いて誤差境界を導出する。
制御と組み合わせると、非線形系のクープマン表現は競合する非線形モデリング法よりも極端に優れた性能を持つ。
論文 参考訳(メタデータ) (2020-10-12T15:15:13Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affineモデルは、ハイブリッドシステムの他のクラスに対する普遍近似、局所線型性、同値性を保証する。
本研究では,任意の領域を持つ固有入力モデル(NPWARX)を用いたPieceWise Auto Regressiveの同定に着目する。
このアーキテクチャは、機械学習の分野で開発されたMixture of Expertの概念に従って考案された。
論文 参考訳(メタデータ) (2020-09-29T12:50:33Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
本稿では,識別器のミラー化ワッサースタイン損失を利用して,よりセマンティックレベルの再構築を行う逆自動エンコーダの変種を提案する。
我々は,再建基準の代替として,異常スコアの代替尺度を提案した。
提案手法は,OOD検出ベンチマークにおける異常検出の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2020-03-24T08:26:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。