論文の概要: A Modular 1D-CNN Architecture for Real-time Digital Pre-distortion
- arxiv url: http://arxiv.org/abs/2111.09637v1
- Date: Thu, 18 Nov 2021 11:30:23 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-19 15:14:11.338215
- Title: A Modular 1D-CNN Architecture for Real-time Digital Pre-distortion
- Title(参考訳): リアルタイムディジタルプリディストリクトのためのモジュラー1d-cnnアーキテクチャ
- Authors: Udara De Silva (1), Toshiaki Koike-Akino (1), Rui Ma (1), Ao Yamashita
(2), Hideyuki Nakamizo (2) ((1) Mitsubishi Electric Research Labs, Cambridge,
MA, USA, (2) Mitsubishi Electric Corporation, Information Tech. R&D Center,
Kanagawa, Japan)
- Abstract要約: 本研究では,1次元畳み込みニューラルネットワーク(1D-CNN)ディジタルプリディストレーション(DPD)技術を実装し,RFパワー増幅器(PA)をリアルタイムに線形化する,ハードウェアフレンドリな新しいモジュラーアーキテクチャについて報告する。
100MHzの信号を用いた実験結果から,提案した1D-CNNはリアルタイムDPDアプリケーションにおいて,他のニューラルネットワークアーキテクチャと比較して優れた性能が得られることが示された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study reports a novel hardware-friendly modular architecture for
implementing one dimensional convolutional neural network (1D-CNN) digital
predistortion (DPD) technique to linearize RF power amplifier (PA)
real-time.The modular nature of our design enables DPD system adaptation for
variable resource and timing constraints.Our work also presents a co-simulation
architecture to verify the DPD performance with an actual power amplifier
hardware-in-the-loop.The experimental results with 100 MHz signals show that
the proposed 1D-CNN obtains superior performance compared with other neural
network architectures for real-time DPD application.
- Abstract(参考訳): This study reports a novel hardware-friendly modular architecture for implementing one dimensional convolutional neural network (1D-CNN) digital predistortion (DPD) technique to linearize RF power amplifier (PA) real-time.The modular nature of our design enables DPD system adaptation for variable resource and timing constraints.Our work also presents a co-simulation architecture to verify the DPD performance with an actual power amplifier hardware-in-the-loop.The experimental results with 100 MHz signals show that the proposed 1D-CNN obtains superior performance compared with other neural network architectures for real-time DPD application.
関連論文リスト
- DPD-NeuralEngine: A 22-nm 6.6-TOPS/W/mm$^2$ Recurrent Neural Network Accelerator for Wideband Power Amplifier Digital Pre-Distortion [9.404504586344107]
DPD-NeuralEngine は Gated Recurrent Unit (GRU) Neural Network (NN) に基づく超高速、小型、電力効率の DPD 加速器である。
22nmのCMOS実装は2GHzで動作し、最大250MSpsのI/Q信号を処理できる。
我々の知る限り、この研究はAIベースのDPDアプリケーション固有集積回路(ASIC)アクセラレーターとしては初めてのものである。
論文 参考訳(メタデータ) (2024-10-15T16:39:50Z) - A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures [73.65190161312555]
ARCANAは、混合信号ニューロモルフィック回路の特性を考慮に入れたスパイクニューラルネットワークシミュレータである。
その結果,ソフトウェアでトレーニングしたスパイクニューラルネットワークの挙動を,信頼性の高い推定結果として提示した。
論文 参考訳(メタデータ) (2024-09-23T11:16:46Z) - Sustainable Diffusion-based Incentive Mechanism for Generative AI-driven Digital Twins in Industrial Cyber-Physical Systems [65.22300383287904]
産業用サイバー物理システム(ICPS)は、現代の製造業と産業にとって不可欠なコンポーネントである。
製品ライフサイクルを通じてデータをデジタル化することで、ICPSのDigital Twins(DT)は、現在の産業インフラからインテリジェントで適応的なインフラへの移行を可能にします。
産業用IoT(Industrial Internet of Things, IIoT)デバイスを利用すれば、DTを構築するためのデータを共有するメカニズムは、悪い選択問題の影響を受けやすい。
論文 参考訳(メタデータ) (2024-08-02T10:47:10Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
本稿では,新しい2ストリーム機能融合 "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) アーキテクチャを提案する。
時間空間領域における意味のあるパターンをよりよく学習するために、ハイブリッド畳み込み変換器を統合する「CT」ストリームを設計する。
並行して、時間周波数領域からリッチなパターンを効率的に抽出するために、連続ウェーブレット変換(CWT)を用いて情報を2次元テンソル形式で表現する「TC」ストリームを導入する。
論文 参考訳(メタデータ) (2024-04-15T06:01:48Z) - 1-bit Quantized On-chip Hybrid Diffraction Neural Network Enabled by Authentic All-optical Fully-connected Architecture [4.594367761345624]
本研究では,行列乗算をDNNに組み込んだ新しいアーキテクチャであるHybrid Diffraction Neural Network(HDNN)を紹介する。
特異位相変調層と振幅変調層を用いて、トレーニングされたニューラルネットワークは、数字認識タスクにおいて96.39%と89%の顕著な精度を示した。
論文 参考訳(メタデータ) (2024-04-11T02:54:17Z) - Neuromorphic Split Computing with Wake-Up Radios: Architecture and Design via Digital Twinning [97.99077847606624]
本研究は,遠隔・無線接続型NPUからなる分割計算機システムに,覚醒無線機構を組み込んだ新しいアーキテクチャを提案する。
覚醒無線に基づくニューロモルフィックスプリットコンピューティングシステムの設計における重要な課題は、検知、覚醒信号検出、意思決定のためのしきい値の選択である。
論文 参考訳(メタデータ) (2024-04-02T10:19:04Z) - LightCAM: A Fast and Light Implementation of Context-Aware Masking based
D-TDNN for Speaker Verification [3.3800597813242628]
従来のTDNN(Time Delay Neural Networks)は、計算複雑性と推論速度の遅いコストで最先端のパフォーマンスを実現している。
本稿では,DSM(Deepwise Separable Convolution Module)とマルチスケール機能アグリゲーション(MFA)を併用した,高速かつ軽量なLightCAMを提案する。
論文 参考訳(メタデータ) (2024-02-08T21:47:16Z) - On Neural Architectures for Deep Learning-based Source Separation of
Co-Channel OFDM Signals [104.11663769306566]
周波数分割多重化(OFDM)信号を含む単一チャネル音源分離問題について検討する。
我々はOFDM構造からの洞察に基づいて、ネットワークパラメータ化に対する重要なドメインインフォームド修正を提案する。
論文 参考訳(メタデータ) (2023-03-11T16:29:13Z) - All-optical graph representation learning using integrated diffractive
photonic computing units [51.15389025760809]
フォトニックニューラルネットワークは、電子の代わりに光子を用いて脳にインスパイアされた計算を行う。
我々は、DGNN(diffractive graph neural network)と呼ばれる全光グラフ表現学習アーキテクチャを提案する。
ベンチマークデータベースを用いたノードおよびグラフレベルの分類タスクにおけるDGNN抽出機能の利用を実演し、優れた性能を実現する。
論文 参考訳(メタデータ) (2022-04-23T02:29:48Z) - Large-scale neuromorphic optoelectronic computing with a reconfigurable
diffractive processing unit [38.898230519968116]
回折処理ユニットを構築することにより、光電子再構成可能な計算パラダイムを提案する。
異なるニューラルネットワークを効率的にサポートし、数百万のニューロンで高いモデル複雑性を達成することができる。
市販の光電子部品を用いたプロトタイプシステムは,最先端のグラフィックス処理ユニットの性能を超越している。
論文 参考訳(メタデータ) (2020-08-26T16:34:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。