論文の概要: 1-bit Quantized On-chip Hybrid Diffraction Neural Network Enabled by Authentic All-optical Fully-connected Architecture
- arxiv url: http://arxiv.org/abs/2404.07443v1
- Date: Thu, 11 Apr 2024 02:54:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-12 15:18:26.795172
- Title: 1-bit Quantized On-chip Hybrid Diffraction Neural Network Enabled by Authentic All-optical Fully-connected Architecture
- Title(参考訳): 正光完全連結アーキテクチャによる1ビット量子化オンチップハイブリッド回折ニューラルネットワーク
- Authors: Yu Shao, Haiqi Gao, Yipeng Chen, Yujie liu, Junren Wen, Haidong He, Yuchuan Shao, Yueguang Zhang, Weidong Shen, Chenying Yang,
- Abstract要約: 本研究では,行列乗算をDNNに組み込んだ新しいアーキテクチャであるHybrid Diffraction Neural Network(HDNN)を紹介する。
特異位相変調層と振幅変調層を用いて、トレーニングされたニューラルネットワークは、数字認識タスクにおいて96.39%と89%の顕著な精度を示した。
- 参考スコア(独自算出の注目度): 4.594367761345624
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optical Diffraction Neural Networks (DNNs), a subset of Optical Neural Networks (ONNs), show promise in mirroring the prowess of electronic networks. This study introduces the Hybrid Diffraction Neural Network (HDNN), a novel architecture that incorporates matrix multiplication into DNNs, synergizing the benefits of conventional ONNs with those of DNNs to surmount the modulation limitations inherent in optical diffraction neural networks. Utilizing a singular phase modulation layer and an amplitude modulation layer, the trained neural network demonstrated remarkable accuracies of 96.39% and 89% in digit recognition tasks in simulation and experiment, respectively. Additionally, we develop the Binning Design (BD) method, which effectively mitigates the constraints imposed by sampling intervals on diffraction units, substantially streamlining experimental procedures. Furthermore, we propose an on-chip HDNN that not only employs a beam-splitting phase modulation layer for enhanced integration level but also significantly relaxes device fabrication requirements, replacing metasurfaces with relief surfaces designed by 1-bit quantization. Besides, we conceptualized an all-optical HDNN-assisted lesion detection network, achieving detection outcomes that were 100% aligned with simulation predictions. This work not only advances the performance of DNNs but also streamlines the path towards industrial optical neural network production.
- Abstract(参考訳): 光学ディフラクションニューラルネットワーク(英: Optical Diffraction Neural Networks, DNN)は、光学ニューラルネットワーク(ONN)のサブセットである。
本研究は,行列乗算をDNNに組み込んだ新しいアーキテクチャであるHybrid Diffraction Neural Network(HDNN)を紹介する。
トレーニングされたニューラルネットワークは、特異位相変調層と振幅変調層を用いて、シミュレーションと実験でそれぞれ96.39%と89%の顕著な精度を示した。
さらに,回折単位のサンプリング間隔による制約を効果的に緩和するBinning Design (BD)法を開発した。
さらに, ビーム分割位相変調層を用いたオンチップHDNNを提案するとともに, 1ビット量子化法により設計したリリーフ面に代えて, デバイス製造要件を大幅に緩和する。
さらに、全光学的HDNN支援病変検出ネットワークを概念化し、シミュレーション予測と100%一致した検出結果を得た。
この研究は、DNNの性能を向上するだけでなく、産業用光学ニューラルネットワーク生産への道筋を合理化している。
関連論文リスト
- Residual resampling-based physics-informed neural network for neutron diffusion equations [7.105073499157097]
中性子拡散方程式は原子炉の解析において重要な役割を果たす。
従来のPINNアプローチでは、完全に接続されたネットワーク(FCN)アーキテクチャを利用することが多い。
R2-PINNは、現在の方法に固有の制限を効果的に克服し、中性子拡散方程式のより正確で堅牢な解を提供する。
論文 参考訳(メタデータ) (2024-06-23T13:49:31Z) - Free-Space Optical Spiking Neural Network [0.0]
自由空間光深絞り畳み込みニューラルネットワーク(OSCNN)について紹介する。
この手法は人間の眼の計算モデルからインスピレーションを得ている。
以上の結果から,電子的ONNと比較して,レイテンシと消費電力を最小に抑えた有望な性能を示す。
論文 参考訳(メタデータ) (2023-11-08T09:41:14Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Signal Detection in MIMO Systems with Hardware Imperfections: Message
Passing on Neural Networks [101.59367762974371]
本稿では,Multi-Input-multiple-output (MIMO)通信システムにおける信号検出について検討する。
パイロット信号が限られているディープニューラルネットワーク(DNN)のトレーニングは困難であり、実用化を妨げている。
我々は、ユニタリ近似メッセージパッシング(UAMP)アルゴリズムを利用して、効率的なメッセージパッシングに基づくベイズ信号検出器を設計する。
論文 参考訳(メタデータ) (2022-10-08T04:32:58Z) - Optical Neural Ordinary Differential Equations [44.97261923694945]
隠れ層の連続力学を光学的ODE解法でパラメータ化する光学的ニューラル常微分方程式(ON-ODE)アーキテクチャを提案する。
On-ODEは、PNNとフォトニックインテグレータと光フィードバックループとから構成されており、残留ニューラルネットワーク(ResNet)と、チップ領域占有率を効果的に低減したリカレントニューラルネットワークを表現するように構成できる。
論文 参考訳(メタデータ) (2022-09-26T04:04:02Z) - Scalable Nanophotonic-Electronic Spiking Neural Networks [3.9918594409417576]
スパイキングニューラルネットワーク(SNN)は、高度に並列化されたリアルタイム処理が可能な新しい計算パラダイムを提供する。
フォトニックデバイスは、SNN計算パラダイムに適合する高帯域並列アーキテクチャの設計に最適である。
CMOSとSiPhの併用技術はスケーラブルなSNNコンピューティングアーキテクチャの設計に適している。
論文 参考訳(メタデータ) (2022-08-28T06:10:06Z) - Converting Artificial Neural Networks to Spiking Neural Networks via
Parameter Calibration [21.117214351356765]
スパイキングニューラルネットワーク(SNN)は、次世代ニューラルネットワークの1つとして認識されている。
本研究では、ANNの重みをSNNにコピー&ペーストするだけで、必然的にアクティベーションミスマッチが発生することを論じる。
そこで本研究では,アクティベーションミスマッチを最小限に抑えるため,パラメータの調整を行う層ワイドパラメータキャリブレーションアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-06T18:22:09Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
イベントベースの視覚センサは、画像フレームではなく、イベントストリームの局所的な画素単位の明るさ変化を符号化する。
イベントベースセンサーによる物体認識の最近の進歩は、ディープニューラルネットワークの変換によるものである。
本稿では、イベントベースのパターン認識とオブジェクト検出のためのディープニューラルネットワークのエンドツーエンドトレーニングのためのハイブリッドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-06T23:45:58Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。