Electrically Reconfigurable NbOCl$_2$ Metasurface for Quantum Technologies
- URL: http://arxiv.org/abs/2505.03341v1
- Date: Tue, 06 May 2025 09:11:56 GMT
- Title: Electrically Reconfigurable NbOCl$_2$ Metasurface for Quantum Technologies
- Authors: Omar A. M. Abdelraouf,
- Abstract summary: Entangled photon-pair sources are foundational to advancing quantum technologies, including secure communication, quantum sensing, and imaging.<n>Here, we present an electrically entangled photon-pair source utilizing a nanostructured NbOCl$$ crystal, engineered for operation in the telecommunication C-band.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entangled photon-pair sources are foundational to advancing quantum technologies, including secure communication, quantum sensing, and imaging. For deployment in space-constrained environments such as satellite-based quantum networks or portable devices, compact, reconfigurable, and efficient entanglement sources are essential. Here, we present an electrically tunable entangled photon-pair source utilizing a nanostructured NbOCl$_2$ crystal, engineered for operation in the telecommunication C-band. The inherent non-centrosymmetric lattice symmetry of NbOCl$_2$ enables direct generation of polarization-entangled Bell states without the need for post-selection, leveraging its exceptional second-order nonlinear susceptibility, which surpasses conventional nonlinear materials. By nanopatterning NbOCl$_2$ into a high-quality-factor metasurface, we achieve three orders of magnitude enhancement in photon-pair generation efficiency via resonant excitation of bound states in the continuum resonance, which intensify light-matter interactions. Furthermore, we demonstrate in situ electrical tunability of the photon-pair emission wavelength over a 250 nm range from 1450 nm to 1700 nm by dynamically modulating surrounding liquid crystal layer. Remarkably, the decoupling of photon-pair generation rate and spectral tunability ensures high brightness, above 10,000 coincidences, under active tuning. The air stability and mechanical robustness of NbOCl$_2$ further enhance its practicality for real-world deployment. This work establishes NbOCl$_2$ as a superior material for scalable, on-chip quantum light sources, paving the way for integrated quantum communication systems, adaptive sensors, and portable quantum devices.
Related papers
- Purcell enhanced and tunable single-photon emission at telecom wavelengths from InAs quantum dots in circular photonic crystal resonators [0.06819010383838325]
We fabricate and characterize photonic structures incorporating hole gratings that efficiently support charge carrier transport.<n>We report bright, Purcell-enhanced single-photon emission in the telecom C-band under above-band and phonon-assisted excitation.<n>We present electrically contacted resonators, demonstrating wide range tuneability of quantum dot transitions in the telecom O-band.
arXiv Detail & Related papers (2025-05-16T10:03:54Z) - Hybrid and scalable photonic circuit cavity quantum electrodynamics [16.881676658514966]
We propose and demonstrate a hybrid solid-state cQED platform integrated on a chip.<n>Our device integrates semiconducting quantum dots (QDs) with a thin-film lithium niobate microring resonator.<n>We realize a spectrally tunable hybrid photonic circuit cQED device, sustaining near-constant Purcell factors of 1.89 over a 0.30 nm spectral range.
arXiv Detail & Related papers (2025-04-07T01:45:28Z) - Nonreciprocal quantum photon-pair source with chiral ferroelectric nematics [9.15495359361234]
We experimentally implement a highly-efficient nonreciprocal quantum photon source in a micro/nano-scale helical structured nonlinear optical fluid.<n>We demonstrate up to 22.6 dB isolation in biphoton generation coupled with nonreciprocal quantum polarization states, while maintaining classical optical reciprocity.
arXiv Detail & Related papers (2025-03-14T13:42:30Z) - Scalable microwave-to-optical transducers at single photon level with spins [4.142140287566351]
Microwave-to-optical transduction of single photons will play an essential role in interconnecting future superconducting quantum devices.
We implement an on-chip microwave-to-optical transducer using rare-earth ion (REI) doped crystals.
We demonstrate the interference of photons originating from two simultaneously operated transducers, enabled by the inherent absolute frequencies of the atomic transitions.
arXiv Detail & Related papers (2024-07-11T21:43:02Z) - Efficient photon-pair generation in layer-poled lithium niobate nanophotonic waveguides [10.571773636879247]
Thin-film lithium niobate is a promising platform for on-chip photon-pair generation.
We introduce a layer-poled lithium niobate (LPLN) nanophotonic waveguide for efficient photon-pair generation.
We demonstrate photon-pair generation with a normalized brightness of 3.1*106 Hz nm-1 mW-2 in a 3.3 mm long LPLN waveguide.
arXiv Detail & Related papers (2024-05-17T17:57:26Z) - All-optical modulation with single-photons using electron avalanche [66.27103948750306]
We demonstrate all-optical modulation enabled by electron avalanche process in silicon.<n>Our approach opens the possibility of gigahertz-speed, and potentially even faster, optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Efficient single-photon pair generation by spontaneous parametric
down-conversion in nonlinear plasmonic metasurfaces [0.0]
Spontaneous parametric down-conversion (SPDC) is one of the most versatile nonlinear optical techniques for the generation of entangled and correlated single-photon pairs.
Here we propose a plasmonic metasurface design based on silver nanostripes combined with a bulk lithium niobate (LiNbO3) crystal to realize a new scalable, ultrathin, and efficient SPDC source.
arXiv Detail & Related papers (2021-11-18T15:31:38Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Tunable quantum photonics platform based on fiber-cavity enhanced single
photon emission from two-dimensional hBN [52.915502553459724]
In this work we present a hybrid system consisting of defect centers in few-layer hBN grown by chemical vapor deposition and a fiber-based Fabry-Perot cavity.
We achieve very large cavity-assisted signal enhancement up to 50-fold and equally strong linewidth narrowing owing to cavity funneling.
Our work marks an important milestone for the deployment of 2D materials coupled to fiber-based cavities in practical quantum technologies.
arXiv Detail & Related papers (2020-06-23T14:20:46Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.