論文の概要: Gaussian Determinantal Processes: a new model for directionality in data
- arxiv url: http://arxiv.org/abs/2111.09990v1
- Date: Fri, 19 Nov 2021 00:57:33 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-22 16:08:04.580896
- Title: Gaussian Determinantal Processes: a new model for directionality in data
- Title(参考訳): ガウス行列過程:データにおける方向性の新しいモデル
- Authors: Subhro Ghosh, Philippe Rigollet
- Abstract要約: 本研究では,ガウス DPP のパラメトリック系について,観測点に対するパラメトリック変調の明確な解釈可能な効果について検討する。
パラメータ変調は, 反発構造に方向性を導入することによって観測点に影響を与え, 主方向は最大依存性の方向に対応することを示す。
このモデルにより、主成分分析(PCA)の新たな代替手段が容易に得られ、データが最も拡散する方向を支持する次元削減ツールとなる。
- 参考スコア(独自算出の注目度): 10.591948377239921
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Determinantal point processes (a.k.a. DPPs) have recently become popular
tools for modeling the phenomenon of negative dependence, or repulsion, in
data. However, our understanding of an analogue of a classical parametric
statistical theory is rather limited for this class of models. In this work, we
investigate a parametric family of Gaussian DPPs with a clearly interpretable
effect of parametric modulation on the observed points. We show that parameter
modulation impacts the observed points by introducing directionality in their
repulsion structure, and the principal directions correspond to the directions
of maximal (i.e. the most long ranged) dependency.
This model readily yields a novel and viable alternative to Principal
Component Analysis (PCA) as a dimension reduction tool that favors directions
along which the data is most spread out. This methodological contribution is
complemented by a statistical analysis of a spiked model similar to that
employed for covariance matrices as a framework to study PCA. These theoretical
investigations unveil intriguing questions for further examination in random
matrix theory, stochastic geometry and related topics.
- Abstract(参考訳): 決定点過程 (Determinantal point process, DPPs) は、最近、データにおける負の依存または反発の現象をモデル化するための一般的なツールとなっている。
しかしながら、古典的パラメトリック統計理論の類似性に対する我々の理解は、このクラスのモデルに対してかなり限定的である。
本研究では,観測点に対するパラメトリック変調の影響を明確に解釈可能なガウス型dppのパラメトリック系について検討する。
パラメータ変調は、その反発構造に方向性を導入することによって観測された点に影響を及ぼし、主方向は最大依存(すなわち最も長い範囲)の方向に対応することを示す。
このモデルにより、主成分分析(PCA)の新たな代替手段が容易に得られ、データが最も拡散する方向を支持する次元削減ツールとなる。
この手法は,PCA研究の枠組みとして共分散行列に類似したスパイクモデルの統計的解析によって補完される。
これらの理論的研究は、確率行列理論、確率幾何学および関連するトピックのさらなる検討に興味深い疑問を呈する。
関連論文リスト
- Induced Covariance for Causal Discovery in Linear Sparse Structures [55.2480439325792]
因果モデルでは、観測データから変数間の因果関係を解き明かそうとしている。
本稿では,変数が線形に疎結合な関係を示す設定のための新しい因果探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-02T04:01:38Z) - Model-Based Reparameterization Policy Gradient Methods: Theory and
Practical Algorithms [88.74308282658133]
Reization (RP) Policy Gradient Methods (PGM) は、ロボット工学やコンピュータグラフィックスにおける連続的な制御タスクに広く採用されている。
近年の研究では、長期強化学習問題に適用した場合、モデルベースRP PGMはカオス的かつ非滑らかな最適化環境を経験する可能性があることが示されている。
本稿では,長期モデルアンロールによる爆発的分散問題を緩和するスペクトル正規化法を提案する。
論文 参考訳(メタデータ) (2023-10-30T18:43:21Z) - SLEM: Machine Learning for Path Modeling and Causal Inference with Super
Learner Equation Modeling [3.988614978933934]
因果推論は科学の重要な目標であり、研究者は観測データを使って意味のある結論に達することができる。
経路モデル、構造方程式モデル(SEM)および指向非巡回グラフ(DAG)は、現象の根底にある因果構造に関する仮定を明確に特定する手段を提供する。
本稿では,機械学習のスーパーラーナーアンサンブルを統合したパスモデリング手法であるSuper Learner Equation Modelingを提案する。
論文 参考訳(メタデータ) (2023-08-08T16:04:42Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
本稿では,低ランク構造制約下でのグラフ学習のためのフレキシブルなアルゴリズムフレームワークを提案する。
この問題は楕円分布のペナルティ化された最大推定値として表される。
楕円モデルによく適合する正定行列と定ランクの正半定行列のジオメトリを利用する。
論文 参考訳(メタデータ) (2022-10-21T13:19:45Z) - On the Influence of Enforcing Model Identifiability on Learning dynamics
of Gaussian Mixture Models [14.759688428864159]
特異モデルからサブモデルを抽出する手法を提案する。
本手法はトレーニング中のモデルの識別性を強制する。
この手法がディープニューラルネットワークのようなより複雑なモデルにどのように適用できるかを示す。
論文 参考訳(メタデータ) (2022-06-17T07:50:22Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - Surrogate-based variational data assimilation for tidal modelling [0.0]
データ同化(DA)は、物理知識と観測を結合するために広く用いられている。
気候変動の文脈では、古いキャリブレーションは必ずしも新しいシナリオに使用できない。
これにより、DA計算コストの問題が提起される。
複素モデルを代用する2つの方法が提案されている。
論文 参考訳(メタデータ) (2021-06-08T07:39:38Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - Factor Analysis, Probabilistic Principal Component Analysis, Variational
Inference, and Variational Autoencoder: Tutorial and Survey [5.967999555890417]
因子分析、確率的主成分分析(PCA)、変分推論、変分オートエンコーダ(VAE)に関するチュートリアルおよび調査論文。
彼らは、すべてのデータポイントが低次元の潜伏因子から生成されるか、または引き起こされると仮定する。
推論と生成動作のために、これらのモデルは、データ空間における新しいデータポイントの生成にも使用できる。
論文 参考訳(メタデータ) (2021-01-04T01:29:09Z) - Predicting Multidimensional Data via Tensor Learning [0.0]
本研究では,本データセットの内在的多次元構造を保持するモデルを開発する。
モデルパラメータを推定するために、オルタネート・リースト・スクエアスアルゴリズムを開発した。
提案モデルは,予測文献に存在するベンチマークモデルより優れている。
論文 参考訳(メタデータ) (2020-02-11T11:57:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。