A quantum network of entangled optical atomic clocks
- URL: http://arxiv.org/abs/2111.10336v1
- Date: Fri, 19 Nov 2021 17:34:48 GMT
- Title: A quantum network of entangled optical atomic clocks
- Authors: B. C. Nichol, R. Srinivas, D. P. Nadlinger, P. Drmota, D. Main, G.
Araneda, C. J. Ballance, and D. M. Lucas
- Abstract summary: We demonstrate the first quantum network of entangled optical clocks using two $88$Sr$+$ ions separated by a macroscopic distance (2 m)
We find that entanglement reduces the measurement uncertainty by a factor close to $sqrt2$, as predicted for the Heisenberg limit.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Optical atomic clocks are our most precise tools to measure time and
frequency. They enable precision frequency comparisons between atoms in
separate locations to probe the space-time variation of fundamental constants,
the properties of dark matter, and for geodesy. Measurements on independent
systems are limited by the standard quantum limit (SQL); measurements on
entangled systems, in contrast, can surpass the SQL to reach the ultimate
precision allowed by quantum theory - the so-called Heisenberg limit. While
local entangling operations have been used to demonstrate this enhancement at
microscopic distances, frequency comparisons between remote atomic clocks
require rapid high-fidelity entanglement between separate systems that have no
intrinsic interactions. We demonstrate the first quantum network of entangled
optical clocks using two $^{88}$Sr$^+$ ions separated by a macroscopic distance
(2 m), that are entangled using a photonic link. We characterise the
entanglement enhancement for frequency comparisons between the ions. We find
that entanglement reduces the measurement uncertainty by a factor close to
$\sqrt{2}$, as predicted for the Heisenberg limit, thus halving the number of
measurements required to reach a given precision. Practically, today's optical
clocks are typically limited by laser dephasing; in this regime, we find that
using entangled clocks confers an even greater benefit, yielding a factor 4
reduction in the number of measurements compared to conventional correlation
spectroscopy techniques. As a proof of principle, we demonstrate this
enhancement for measuring a frequency shift applied to one of the clocks. Our
results show that quantum networks have now attained sufficient maturity for
enhanced metrology. This two-node network could be extended to additional
nodes, to other species of trapped particles, or to larger entangled systems
via local operations.
Related papers
- Long-lived entanglement of molecules in magic-wavelength optical tweezers [41.94295877935867]
We present the first realisation of a microwave-driven entangling gate between two molecules.
We show that the magic-wavelength trap preserves the entanglement, with no measurable decay over 0.5 s.
The extension of precise quantum control to complex molecular systems will allow their additional degrees of freedom to be exploited across many domains of quantum science.
arXiv Detail & Related papers (2024-08-27T09:28:56Z) - Multi-qubit gates and Schrödinger cat states in an optical clock [3.476421900110317]
We develop a family of multi-qubit Rydberg gates to generate Schr"odinger cat states of the Greenberger-Horne-Zeilinger type with up to 9 optical clock qubits in a programmable atom array.
In an atom-laser comparison at sufficiently short dark times, we demonstrate a fractional frequency instability below the standard quantum limit using GHZ states of up to 4 qubits.
These results demonstrate key building blocks for approaching Heisenberg-limited scaling of optical atomic clock precision.
arXiv Detail & Related papers (2024-02-26T04:11:58Z) - Universal quantum operations and ancilla-based readout for tweezer clocks [3.2810235099960297]
We show universal quantum operations and ancilla-based readout for ultranarrow optical transitions of neutral atoms.
Our work lays the foundation for hybrid processor-clock devices with neutral atoms and points to a future of practical applications for quantum processors linked with quantum sensors.
arXiv Detail & Related papers (2024-02-25T23:35:36Z) - Atomic clock interferometry using optical tweezers [0.0]
We propose using optical tweezers to implement clock interferometry.
Our proposed clock interferometer employs an alkaline-earth-like atom held in an optical trap at the magic wavelength.
arXiv Detail & Related papers (2024-02-22T09:57:07Z) - A Quantum Theory of Temporally Mismatched Homodyne Measurements with Applications to Optical Frequency Comb Metrology [39.58317527488534]
We derive measurement operators for homodyne detection with arbitrary mode overlap.
These operators establish a foundation to extend frequency-comb interferometry to a wide range of scenarios.
arXiv Detail & Related papers (2023-10-05T22:49:50Z) - Finite Pulse-Time Effects in Long-Baseline Quantum Clock Interferometry [45.73541813564926]
We study the interplay of the quantum center-of-mass $-$ that can become delocalized $-$ together with the internal clock transitions.
We show at the example of a Gaussian laser beam that the proposed quantum-clock interferometers are stable against perturbations from varying optical fields.
arXiv Detail & Related papers (2023-09-25T18:00:03Z) - Enhanced optomechanical interaction in the unbalanced interferometer [40.96261204117952]
Quantum optomechanical systems enable the study of fundamental questions on quantum nature of massive objects.
Here we propose a modification of the Michelson-Sagnac interferometer, which allows to boost the optomechanical coupling strength.
arXiv Detail & Related papers (2023-05-11T14:24:34Z) - Realizing spin squeezing with Rydberg interactions in a programmable
optical clock [0.6376404422444008]
We demonstrate spin squeezing in a neutral-atom optical clock based on a programmable array of interacting optical qubits.
We observe a fractional stability of $1.087(1)times 10-15$ at one-second averaging time, which is 1.94(1) dB below the standard quantum limit.
The realization of this spin-squeezing protocol in a programmable atom-array clock opens the door to a wide range of quantum-information inspired techniques.
arXiv Detail & Related papers (2023-03-14T17:11:33Z) - Direct comparison of two spin squeezed optical clocks below the quantum
projection noise limit [0.6376404422444008]
Building scalable quantum systems that demonstrate genuine enhancement based on entanglement is a major scientific goal.
We present a new optical platform integrated with collective strong-coupling cavity QED for quantum non-demolition (QND) measurement.
arXiv Detail & Related papers (2022-11-16T02:22:49Z) - Universality-of-clock-rates test using atom interferometry with $T^{3}$
scaling [63.08516384181491]
Atomic clocks generate delocalized quantum clocks.
Tests of universality of clock rates (one facet of LPI) to atom interferometry generating delocalized quantum clocks proposed.
Results extend our notion of time, detached from classical and localized philosophies.
arXiv Detail & Related papers (2022-04-05T12:26:56Z) - Telecom-heralded entanglement between remote multimode solid-state
quantum memories [55.41644538483948]
Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
arXiv Detail & Related papers (2021-01-13T14:31:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.