Quantum signatures in quadratic optomechanical heat engine with an atom
in a tapered trap
- URL: http://arxiv.org/abs/2111.12803v7
- Date: Wed, 17 Aug 2022 13:57:29 GMT
- Title: Quantum signatures in quadratic optomechanical heat engine with an atom
in a tapered trap
- Authors: Mohsen Izadyari, Mehmet \"Onc\"u, Kadir Durak, \"Ozg\"ur E.
M\"ustecapl{\i}o\u{g}lu
- Abstract summary: We investigate how quantum signatures can emerge in a single atom heat engine consisting of an atom confined in a tapered trap.
We model such a system using a quadratic optomechanical model and identify an effective Otto cycle in the system's dynamics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate how quantum signatures can emerge in a single atom heat engine
consisting of an atom confined in a tapered trap and subject to hot and cold
thermal reservoirs. A similar system was realized experimentally in Ref.[1]. We
model such a system using a quadratic optomechanical model and identify an
effective Otto cycle in the system's dynamics. We compare the engine's
performance in the quantum and classical regimes by evaluating the power
dissipated. We find that lowering the temperature is insufficient to make the
single atom engine of Ref.[1] a genuine quantum-enhanced heat engine. We show
that it is necessary to make the trap more asymmetric and confined to ensure
that quantum correlations cause an enhancement in the power output.
Related papers
- Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum Otto engine with quantum correlations [3.740507726022551]
We investigate a photo-Otto engine that is working with a single-mode radiation field inside an optical cavity and driven by a hot and a cold reservoir.
We show that quantum discord boosts the performance and efficiency of the quantum engine, and even may change the operation mode.
arXiv Detail & Related papers (2022-11-23T02:56:10Z) - Dynamical Control of Quantum Heat Engines Using Exceptional Points [0.09679987540134938]
A quantum thermal machine is an open quantum system coupled to hot and cold thermal baths.
A hallmark of non-Hermiticity is the existence of exceptional points where the eigenvalues of a non-Hermitian Hamiltonian or an Liouvillian superoperator and their associated eigenvectors coalesce.
Here, we report the experimental realisation of a single-ion heat engine and demonstrate the effect of the Liouvillian exceptional points on the dynamics and the performance of a quantum heat engine.
arXiv Detail & Related papers (2022-10-24T06:49:05Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Model-free optimization of power/efficiency tradeoffs in quantum thermal
machines using reinforcement learning [0.0]
A quantum thermal machine is an open quantum system that enables the conversion between heat and work at the micro or nano-scale.
We introduce a general model-free framework based on Reinforcement Learning to identify out-of-equilibrium thermodynamic cycles.
arXiv Detail & Related papers (2022-04-10T22:44:28Z) - Implementation of a two-stroke quantum heat engine with a collisional
model [50.591267188664666]
We put forth a quantum simulation of a stroboscopic two-stroke thermal engine in the IBMQ processor.
The system consists of a quantum spin chain connected to two baths at their boundaries, prepared at different temperatures using the variational quantum thermalizer algorithm.
arXiv Detail & Related papers (2022-03-25T16:55:08Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Quantum jump approach to microscopic heat engines [0.0]
Modern technologies could soon make it possible to investigate the operation cycles of quantum heat engines by counting the photons that are emitted and absorbed by their working systems.
We show that such experiments would give access to a set of observables that determine the trade-off between power and efficiency in finite-time engine cycles.
arXiv Detail & Related papers (2020-05-25T17:00:42Z) - Quantifying the quantum heat contribution from a driven superconducting
circuit [0.0]
We propose a two-reservoir setup to detect the quantum component in the heat flow exchanged by a coherently driven atom with its thermal environment.
tuning the driving parameters switches on and off the quantum and classical contributions to the heat flows, enabling their independent characterization.
arXiv Detail & Related papers (2020-01-28T14:38:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.