論文の概要: Learning continuous-time PDEs from sparse data with graph neural
networks
- arxiv url: http://arxiv.org/abs/2006.08956v3
- Date: Fri, 29 Jan 2021 16:33:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-20 19:20:08.282952
- Title: Learning continuous-time PDEs from sparse data with graph neural
networks
- Title(参考訳): グラフニューラルネットワークを用いたスパースデータからの連続時間PDE学習
- Authors: Valerii Iakovlev, Markus Heinonen, Harri L\"ahdesm\"aki
- Abstract要約: 本稿では、メッセージパッシンググラフニューラルネットワークにより制御方程式をパラメータ化した動的システムの連続時間差分モデルを提案する。
モデルが非構造化グリッドで機能する能力、任意の時間ステップ、ノイズの多い観測を実演する。
提案手法は,PDEと最先端予測性能の第一次・高次PDEを含む,既知の物理系に対する既存手法と比較する。
- 参考スコア(独自算出の注目度): 10.259254824702555
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The behavior of many dynamical systems follow complex, yet still unknown
partial differential equations (PDEs). While several machine learning methods
have been proposed to learn PDEs directly from data, previous methods are
limited to discrete-time approximations or make the limiting assumption of the
observations arriving at regular grids. We propose a general continuous-time
differential model for dynamical systems whose governing equations are
parameterized by message passing graph neural networks. The model admits
arbitrary space and time discretizations, which removes constraints on the
locations of observation points and time intervals between the observations.
The model is trained with continuous-time adjoint method enabling efficient
neural PDE inference. We demonstrate the model's ability to work with
unstructured grids, arbitrary time steps, and noisy observations. We compare
our method with existing approaches on several well-known physical systems that
involve first and higher-order PDEs with state-of-the-art predictive
performance.
- Abstract(参考訳): 多くの力学系の挙動は複素だがまだ未知の偏微分方程式(PDE)に従う。
データから直接PDEを学習するためにいくつかの機械学習手法が提案されているが、従来の手法は離散時間近似に制限されている。
本稿では、メッセージパッシンググラフニューラルネットワークにより制御方程式をパラメータ化した力学系に対する一般的な連続時間差分モデルを提案する。
このモデルは任意の空間と時間の離散化を認め、観測点の位置と観測の間の時間間隔の制約を取り除く。
このモデルは、効率的なニューラルPDE推論を可能にする連続時間随伴法を用いて訓練される。
モデルが非構造化グリッドで動作できること、任意の時間ステップ、ノイズの多い観察を実証する。
提案手法は,PDEと最先端予測性能を併せ持ついくつかの既知物理系の既存手法と比較する。
関連論文リスト
- PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
本稿では,ニューラルPDEソルバの原理に着想を得た新しいLMTFモデルであるPDETimeを提案する。
7つの異なる時間的実世界のLMTFデータセットを用いた実験により、PDETimeがデータ固有の性質に効果的に適応できることが判明した。
論文 参考訳(メタデータ) (2024-02-25T17:39:44Z) - Learning Space-Time Continuous Neural PDEs from Partially Observed
States [13.01244901400942]
格子独立モデル学習偏微分方程式(PDE)を雑音および不規則格子上の部分的な観測から導入する。
本稿では、効率的な確率的フレームワークとデータ効率とグリッド独立性を改善するための新しい設計エンコーダを備えた時空間連続型ニューラルネットワークPDEモデルを提案する。
論文 参考訳(メタデータ) (2023-07-09T06:53:59Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
多くのNNアプローチは、支配的PDEと物質モデルの両方を暗黙的にモデル化するエンドツーエンドモデルを学ぶ。
PDEの管理はよく知られており、学習よりも明示的に実施されるべきである、と私たちは主張する。
そこで我々は,ネットワークアーキテクチャを利用したニューラル構成則(Neural Constitutive Laws,NCLaw)と呼ばれる新しいフレームワークを導入する。
論文 参考訳(メタデータ) (2023-04-27T17:42:24Z) - Learning PDE Solution Operator for Continuous Modeling of Time-Series [1.39661494747879]
この研究は、動的モデリング能力を改善する偏微分方程式(PDE)に基づくフレームワークを提案する。
時間的離散化の反復的操作や特定のグリッドを必要とせずに連続的に処理できるニューラル演算子を提案する。
我々のフレームワークは、現実世界のアプリケーションに容易に適用可能な、ニューラルネットワークの継続的な表現のための新しい方法を開く。
論文 参考訳(メタデータ) (2023-02-02T03:47:52Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
本稿では,超ネットワーク解法とフーリエニューラル演算子アーキテクチャを組み合わせた新しい手法を提案する。
本手法は, 1次元, 2次元, 3次元の非線形流体を含む様々な時間発展PDEを用いて実験を行った。
その結果、新しい手法は、監督点の時点における学習精度を向上し、任意の中間時間にその解を補間できることを示した。
論文 参考訳(メタデータ) (2022-07-28T19:59:14Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
本稿では,連続時間フレームワークを用いたグラフのスコアベース生成モデルを提案する。
本手法は, トレーニング分布に近い分子を生成できるが, 化学価数則に違反しないことを示す。
論文 参考訳(メタデータ) (2022-02-05T08:21:04Z) - Time Series Forecasting with Ensembled Stochastic Differential Equations
Driven by L\'evy Noise [2.3076895420652965]
我々は、ニューラルネットワークを備えたSDEの集合を用いて、ノイズのある時系列の長期的な傾向を予測する。
まず、位相空間再構成法を用いて時系列データの固有次元を抽出する。
次に、$alpha$-stable L'evyの動作によって駆動されるSDEを探索し、時系列データをモデル化し、ニューラルネットワーク近似を用いて問題を解く。
論文 参考訳(メタデータ) (2021-11-25T16:49:01Z) - Neural ODE Processes [64.10282200111983]
NDP(Neural ODE Process)は、Neural ODEの分布によって決定される新しいプロセスクラスである。
我々のモデルは,少数のデータポイントから低次元システムのダイナミクスを捉えることができることを示す。
論文 参考訳(メタデータ) (2021-03-23T09:32:06Z) - A Deep Learning Approach for Predicting Spatiotemporal Dynamics From
Sparsely Observed Data [10.217447098102165]
未知偏微分方程式(PDE)によって駆動される物理過程の学習予測モデルの問題を考える。
本稿では,基礎となるダイナミクスを学習し,分散データサイトを用いてその進化を予測するディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2020-11-30T16:38:00Z) - Learning Continuous-Time Dynamics by Stochastic Differential Networks [32.63114111531396]
変動微分ネットワーク(VSDN)という,フレキシブルな連続時間リカレントニューラルネットワークを提案する。
VSDNは神経微分方程式(SDE)による散発時間系列の複雑なダイナミクスを埋め込む
VSDNは最先端の継続的ディープラーニングモデルより優れており、散発時系列の予測やタスクにおいて優れた性能を発揮する。
論文 参考訳(メタデータ) (2020-06-11T01:40:34Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。