論文の概要: Morphology Decoder: A Machine Learning Guided 3D Vision Quantifying
Heterogenous Rock Permeability for Planetary Surveillance and Robotic
Functions
- arxiv url: http://arxiv.org/abs/2111.13460v1
- Date: Fri, 26 Nov 2021 12:20:03 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-29 16:05:23.355085
- Title: Morphology Decoder: A Machine Learning Guided 3D Vision Quantifying
Heterogenous Rock Permeability for Planetary Surveillance and Robotic
Functions
- Title(参考訳): Morphology Decoder: 惑星探査とロボット機能のための異種岩の透過性を定量化する機械学習ガイド
- Authors: Omar Alfarisi, Aikifa Raza, Djamel Ouzzane, Hongxia Li, Mohamed Sassi,
Tiejun Zhang
- Abstract要約: 透水性は自然流体の流動特性に支配的な影響を及ぼす。
格子ボルツマンシミュレータはナノ・マイクロ孔ネットワークから透過性を決定する。
機械学習のセグメント化した不均一な白亜紀テクスチャの並列・直列フロー再構成法であるモルフォロジーデコーダを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Permeability has a dominant influence on the flow properties of a natural
fluid. Lattice Boltzmann simulator determines permeability from the nano and
micropore network. The simulator holds millions of flow dynamics calculations
with its accumulated errors and high consumption of computing power. To
efficiently and consistently predict permeability, we propose a morphology
decoder, a parallel and serial flow reconstruction of machine learning
segmented heterogeneous Cretaceous texture from 3D micro computerized
tomography and nuclear magnetic resonance images. For 3D vision, we introduce
controllable-measurable-volume as new supervised segmentation, in which a
unique set of voxel intensity corresponds to grain and pore throat sizes. The
morphology decoder demarks and aggregates the morphologies boundaries in a
novel way to produce permeability. Morphology decoder method consists of five
novel processes, which describes in this paper, these novel processes are: (1)
Geometrical 3D Permeability, (2) Machine Learning guided 3D Properties
Recognition of Rock Morphology, (3) 3D Image Properties Integration Model for
Permeability, (4) MRI Permeability Imager, and (5) Morphology Decoder (the
process that integrates the other four novel processes).
- Abstract(参考訳): 透水性は自然流体の流動特性に支配的な影響を及ぼす。
格子ボルツマンシミュレータはナノ・マイクロ孔ネットワークから透過性を決定する。
シミュレータは、その蓄積したエラーと計算能力の高消費で数百万のフローダイナミクス計算を保持する。
そこで本研究では,3次元マイクロコンピュータトモグラフィおよび核磁気共鳴画像から,均質な白亜系テクスチャを分割した機械学習のモルフォロジーデコーダ,並列連続フロー再構成を提案する。
3次元視覚では,新しい教師付きセグメンテーションとして制御可能な容積を導入し,一意なボクセル強度のセットは粒径と孔径に対応している。
モルフォロジーデコーダは、透過性を生み出す新しい方法で形態境界を記述し、集約する。
形態素デコーダ法は,(1)幾何学的3次元透視性,(2)機械学習による岩石形態の3次元特性認識,(3)透視性のための3次元画像特性統合モデル,(4)MRI透視性イメージ,(5)形態素デコーダの5つの新しいプロセスから構成される。
関連論文リスト
- DeforHMR: Vision Transformer with Deformable Cross-Attention for 3D Human Mesh Recovery [2.1653492349540784]
DeforHMRは、人間のポーズパラメータの予測を強化するために設計された、新しい回帰ベースの単分子HMRフレームワークである。
DeforHMRは、トランスフォーマーデコーダ内の新しいクエリ非依存の変形可能なクロスアテンション機構を活用する。
広範に使用されている3D HMRベンチマーク3DPW と RICH 上で,単一フレーム回帰に基づく手法の最先端性能を実現する。
論文 参考訳(メタデータ) (2024-11-18T00:46:59Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
我々は,次のステップの予測ではなく,ダイナミックスを直接トラジェクトリとしてモデル化するために,Equivariant Graph Neural Operator (EGNO)を提案する。
EGNOは3次元力学の時間的進化を明示的に学習し、時間とともに関数として力学を定式化し、それを近似するためにニューラル演算子を学習する。
粒子シミュレーション、人間のモーションキャプチャー、分子動力学を含む複数の領域における総合的な実験は、既存の手法と比較して、EGNOの極めて優れた性能を示す。
論文 参考訳(メタデータ) (2024-01-19T21:50:32Z) - DiffuseBot: Breeding Soft Robots With Physics-Augmented Generative
Diffusion Models [102.13968267347553]
本稿では,様々なタスクにおいて優れたソフトロボット形態を生成する物理拡張拡散モデルであるDiffuseBotを提案する。
我々は、その能力とともに、シミュレーションされた、そして製造された様々なロボットを紹介します。
論文 参考訳(メタデータ) (2023-11-28T18:58:48Z) - Multi-view Hybrid Graph Convolutional Network for Volume-to-mesh Reconstruction in Cardiovascular MRI [43.47826598981827]
画像間直接抽出のための新しいアーキテクチャであるHybridVNetを紹介する。
グラフ構造として符号化することで,表面および体積メッシュを効率的に処理できることを示す。
我々のモデルは、従来の畳み込みネットワークと変分グラフ生成モデル、深い監督とメッシュ固有の正規化を組み合わせたものです。
論文 参考訳(メタデータ) (2023-11-22T21:51:29Z) - GVP: Generative Volumetric Primitives [76.95231302205235]
本稿では,512解像度画像をリアルタイムにサンプリング・レンダリングできる最初の純3次元生成モデルである生成ボリュームプリミティブ(GVP)を提案する。
GVPは、複数のプリミティブとその空間情報を共同でモデル化し、どちらも2D畳み込みネットワークを介して効率的に生成することができる。
いくつかのデータセットの実験は、最先端技術よりも優れた効率性とGVPの3次元一貫性を示す。
論文 参考訳(メタデータ) (2023-03-31T16:50:23Z) - CryoAI: Amortized Inference of Poses for Ab Initio Reconstruction of 3D
Molecular Volumes from Real Cryo-EM Images [30.738209997049395]
粒子ポーズの勾配に基づく最適化と単一粒子Creo-EMデータからの電子散乱電位を用いた等質コンフォーメーションのためのアブイニシアト再構成アルゴリズムであるCreoAIを紹介する。
CryoAIは、シミュレーションデータと実験データの両方に対して、最先端のCryo-EMソルバと同等の結果を得る。
論文 参考訳(メタデータ) (2022-03-15T17:58:03Z) - 3D Reconstruction of Curvilinear Structures with Stereo Matching
DeepConvolutional Neural Networks [52.710012864395246]
本稿では,立体対における曲線構造の検出とマッチングのための完全自動パイプラインを提案する。
主に、TEM画像のステレオ対から転位を3次元再構成することに焦点を当てる。
論文 参考訳(メタデータ) (2021-10-14T23:05:47Z) - Scene Synthesis via Uncertainty-Driven Attribute Synchronization [52.31834816911887]
本稿では,3次元シーンの多様な特徴パターンを捉えるニューラルシーン合成手法を提案する。
提案手法は,ニューラルネットワークと従来のシーン合成手法の双方の長所を結合する。
論文 参考訳(メタデータ) (2021-08-30T19:45:07Z) - gradSim: Differentiable simulation for system identification and
visuomotor control [66.37288629125996]
本稿では,微分可能マルチフィジカルシミュレーションと微分可能レンダリングを活用し,3次元監督への依存を克服するフレームワークであるgradsimを提案する。
当社の統合グラフは、状態ベースの(3D)監督に頼ることなく、挑戦的なバイスモメータ制御タスクで学習を可能にします。
論文 参考訳(メタデータ) (2021-04-06T16:32:01Z) - VC-Net: Deep Volume-Composition Networks for Segmentation and
Visualization of Highly Sparse and Noisy Image Data [13.805816310795256]
本稿では,3次元微小血管のロバスト抽出のためのエンドツーエンド深層学習手法VC-Netを提案する。
中心となる新規性は、ボリューム可視化技術(MIP)を自動利用して、3Dデータ探索を強化することである。
マルチストリーム畳み込みニューラルネットワークは、それぞれ3次元体積と2次元MIPの特徴を学習し、その相互依存性を結合体積-合成埋め込み空間で探索するために提案される。
論文 参考訳(メタデータ) (2020-09-14T04:15:02Z) - A new geodesic-based feature for characterization of 3D shapes:
application to soft tissue organ temporal deformations [0.0]
臓器の時間的変形に関する研究に直接応用する。
我々は,3次元表面点の少ない強制呼吸運動時の膀胱の挙動を特徴付ける。
合成3次元形状と現実的なダイナミックMRIデータの両方に特徴の頑健さを実証する。
論文 参考訳(メタデータ) (2020-03-18T16:56:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。