論文の概要: Schema matching using Gaussian mixture models with Wasserstein distance
- arxiv url: http://arxiv.org/abs/2111.14244v1
- Date: Sun, 28 Nov 2021 21:44:58 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-01 07:11:57.987780
- Title: Schema matching using Gaussian mixture models with Wasserstein distance
- Title(参考訳): ガウス混合モデルとwasserstein距離を用いたスキーママッチング
- Authors: Mateusz Przyborowski, Mateusz Pabi\'s, Andrzej Janusz, Dominik
\'Sl\k{e}zak
- Abstract要約: ガウス混合モデル間のワッサーシュタイン距離の近似を導出し、線形問題に還元する。
本稿では,ガウス混合モデル間のワッサーシュタイン距離の近似の1つを導出し,線形問題に還元する。
- 参考スコア(独自算出の注目度): 0.2676349883103403
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gaussian mixture models find their place as a powerful tool, mostly in the
clustering problem, but with proper preparation also in feature extraction,
pattern recognition, image segmentation and in general machine learning. When
faced with the problem of schema matching, different mixture models computed on
different pieces of data can maintain crucial information about the structure
of the dataset. In order to measure or compare results from mixture models, the
Wasserstein distance can be very useful, however it is not easy to calculate
for mixture distributions. In this paper we derive one of possible
approximations for the Wasserstein distance between Gaussian mixture models and
reduce it to linear problem. Furthermore, application examples concerning real
world data are shown.
- Abstract(参考訳): ガウス混合モデルは、主にクラスタリング問題において、強力なツールとして位置づけられるが、特徴抽出、パターン認識、イメージセグメンテーション、一般的な機械学習にも適切な準備がされている。
スキーママッチングの問題に直面すると、異なるデータ片で計算された異なる混合モデルがデータセットの構造に関する重要な情報を保持できる。
混合モデルから結果を測定または比較するために、ワッサースタイン距離は非常に有用であるが、混合分布の計算は容易ではない。
本稿では,ガウス混合モデル間のワッサーシュタイン距離の近似の1つを導出し,線形問題に還元する。
さらに、実世界のデータに関する応用例を示す。
関連論文リスト
- GeoMix: Towards Geometry-Aware Data Augmentation [76.09914619612812]
Mixupは画像分類におけるラベル付き限られたデータによる課題の緩和にかなりの成功を収めている。
In-place graph editing を利用した簡易かつ解釈可能な混合手法 Geometric Mixup (GeoMix) を提案する。
論文 参考訳(メタデータ) (2024-07-15T12:58:04Z) - Fusion of Gaussian Processes Predictions with Monte Carlo Sampling [61.31380086717422]
科学と工学において、私たちはしばしば興味のある変数の正確な予測のために設計されたモデルで作業します。
これらのモデルが現実の近似であることを認識し、複数のモデルを同じデータに適用し、結果を統合することが望ましい。
論文 参考訳(メタデータ) (2024-03-03T04:21:21Z) - Clustering based on Mixtures of Sparse Gaussian Processes [6.939768185086753]
低次元の組込み空間を使ってデータをクラスタする方法は、マシンラーニングにおいて依然として難しい問題である。
本稿では,クラスタリングと次元還元の両立を目的とした共同定式化を提案する。
我々のアルゴリズムはスパースガウス過程の混合に基づいており、スパースガウス過程混合クラスタリング(SGP-MIC)と呼ばれる。
論文 参考訳(メタデータ) (2023-03-23T20:44:36Z) - Learning Gaussian Mixtures Using the Wasserstein-Fisher-Rao Gradient
Flow [12.455057637445174]
ガウス混合モデルを用いて非パラメトリック最大推定器(NPMLE)を計算するための新しいアルゴリズムを提案する。
この手法は、ワッサーシュタイン-フィッシャー-ラオ幾何学を備えた確率測度空間上の勾配降下に基づく。
提案アルゴリズムの有効性を確認するため,広範囲な数値実験を行った。
論文 参考訳(メタデータ) (2023-01-04T18:59:35Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
我々は,観測されていない特徴分布を最大エントロピー仮説で近似することにより,ロジスティック回帰と類似した新しいモデルが,集約データからのみ学習されることを示す。
我々は、この方法で学習したモデルが、完全な非凝集データでトレーニングされたロジスティックモデルに匹敵するパフォーマンスを達成することができるという、いくつかの公開データセットに関する実証的な証拠を提示する。
論文 参考訳(メタデータ) (2022-10-05T09:17:27Z) - A Robust and Flexible EM Algorithm for Mixtures of Elliptical
Distributions with Missing Data [71.9573352891936]
本稿では、ノイズや非ガウス的なデータに対するデータ計算の欠如に対処する。
楕円分布と潜在的な欠落データを扱う特性を混合した新しいEMアルゴリズムについて検討した。
合成データの実験的結果は,提案アルゴリズムが外れ値に対して頑健であり,非ガウスデータで使用可能であることを示す。
論文 参考訳(メタデータ) (2022-01-28T10:01:37Z) - Evaluating State-of-the-Art Classification Models Against Bayes
Optimality [106.50867011164584]
正規化フローを用いて学習した生成モデルのベイズ誤差を正確に計算できることを示す。
われわれの手法を用いて、最先端の分類モデルについて徹底的な調査を行う。
論文 参考訳(メタデータ) (2021-06-07T06:21:20Z) - Tensor decomposition for learning Gaussian mixtures from moments [6.576993289263191]
データ処理と機械学習では、データを正確に表現できるモデルを復元し、活用することが重要な課題である。
この問題に対処するための対称テンソル分解法について検討し,データ分布の経験的モーメントからテンソルを構築する。
論文 参考訳(メタデータ) (2021-06-01T15:11:08Z) - A similarity-based Bayesian mixture-of-experts model [0.5156484100374058]
多変量回帰問題に対する新しい非パラメトリック混合実験モデルを提案する。
条件付きモデルを用いて、サンプル外入力の予測は、観測された各データポイントと類似性に基づいて行われる。
混合物のパラメータと距離測定値に基づいて後部推論を行う。
論文 参考訳(メタデータ) (2020-12-03T18:08:30Z) - Model Fusion with Kullback--Leibler Divergence [58.20269014662046]
異種データセットから学習した後続分布を融合する手法を提案する。
我々のアルゴリズムは、融合モデルと個々のデータセット後部の両方に対する平均場仮定に依存している。
論文 参考訳(メタデータ) (2020-07-13T03:27:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。