Engineering Dissipative Quasicrystals
- URL: http://arxiv.org/abs/2111.14436v2
- Date: Tue, 7 Dec 2021 11:55:59 GMT
- Title: Engineering Dissipative Quasicrystals
- Authors: Tianyu Li, Yong-Sheng Zhang, and Wei Yi
- Abstract summary: We discuss the systematic engineering of quasicrystals in open quantum systems where quasiperiodicity is introduced through purely dissipative processes.
Our work suggests a systematic route toward engineering exotic quantum dynamics in open systems, based on insights of non-Hermitian physics.
- Score: 7.182858821473896
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We discuss the systematic engineering of quasicrystals in open quantum
systems where quasiperiodicity is introduced through purely dissipative
processes. While the resulting short-time dynamics is governed by non-Hermitian
variants of the Aubry-Andre-Harper model, we demonstrate how phases and phase
transitions pertaining to the non-Hermitian quasicrystals fundamentally change
the long-time, steady-state-approaching dynamics under the Lindblad master
equation. Our schemes are based on an exact mapping between the eigenspectrum
of the Liouvillian superoperator with that of the non-Hermitian Hamiltonian,
under the condition of quadratic fermionic systems subject to linear
dissipation. Our work suggests a systematic route toward engineering exotic
quantum dynamics in open systems, based on insights of non-Hermitian physics.
Related papers
- Wave-packet dynamics in non-Hermitian systems subject to complex
electric fields [0.0]
Berry phases have long been known to significantly alter the properties of periodic systems.
In non-Hermitian systems, generalizations of the Berry connection have been proposed and shown to have novel effects on dynamics and transport.
We show that the non-Hermiticities of both the band Hamiltonian and the external potential give rise to anomalous weight rate and velocity terms.
arXiv Detail & Related papers (2024-02-02T11:06:46Z) - Sufficient condition for gapless spin-boson Lindbladians, and its
connection to dissipative time-crystals [64.76138964691705]
We discuss a sufficient condition for gapless excitations in the Lindbladian master equation for collective spin-boson systems.
We argue that gapless modes can lead to persistent dynamics in the spin observables with the possible formation of dissipative time-crystals.
arXiv Detail & Related papers (2022-09-26T18:34:59Z) - Harmonic oscillator kicked by spin measurements: a Floquet-like system
without classical analogous [62.997667081978825]
The impulsive driving is provided by stroboscopic measurements on an ancillary degree of freedom.
The dynamics of this system is determined in closed analytical form.
We observe regimes with crystalline and quasicrystalline structures in phase space, resonances, and evidences of chaotic behavior.
arXiv Detail & Related papers (2021-11-23T20:25:57Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Quantum critical systems with dissipative boundaries [0.0]
We study the effects of dissipative boundaries in many-body systems at continuous quantum transitions.
As paradigmatic models, we consider fermionic wires subject to dissipative interactions at the boundaries.
arXiv Detail & Related papers (2021-06-04T15:08:06Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Probing non-Hermitian phase transitions in curved space via quench
dynamics [0.0]
Non-Hermitian Hamiltonians are relevant to describe the features of a broad class of physical phenomena.
We study the interplay of geometry and non-Hermitian dynamics by unveiling the existence of curvature-dependent non-Hermitian phase transitions.
arXiv Detail & Related papers (2020-12-14T19:47:59Z) - Generation of coherence in an exactly solvable nonlinear nanomechanical
system [1.0775419935941009]
This study is focused on the quantum dynamics of a nitrogen-vacancy center coupled to a nonlinear, periodically driven mechanical oscillator.
We observe that the production of coherence through a unitary transformation depends on whether the system is prepared initially in mixed state.
We prove that quantum chaos and diminishing of information about the mixed initial state favors the generation of quantum coherence through the unitary evolution.
arXiv Detail & Related papers (2020-08-19T17:32:16Z) - Berry connection induced anomalous wave-packet dynamics in non-Hermitian
systems [0.0]
Berry phases strongly affect the properties of crystalline materials.
In non-Hermitian systems, generalizations of the Berry connection have been analyzed.
We show that non-Hermiticity is manifested in anomalous weight rate and velocity terms.
arXiv Detail & Related papers (2020-04-28T18:00:12Z) - From stochastic spin chains to quantum Kardar-Parisi-Zhang dynamics [68.8204255655161]
We introduce the asymmetric extension of the Quantum Symmetric Simple Exclusion Process.
We show that the time-integrated current of fermions defines a height field which exhibits a quantum non-linear dynamics.
arXiv Detail & Related papers (2020-01-13T14:30:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.