Wave-packet dynamics in non-Hermitian systems subject to complex
electric fields
- URL: http://arxiv.org/abs/2402.01312v1
- Date: Fri, 2 Feb 2024 11:06:46 GMT
- Title: Wave-packet dynamics in non-Hermitian systems subject to complex
electric fields
- Authors: Bar Alon (1), Roni Ilan (1), Moshe Goldstein (1) ((1) Raymond and
Beverly Sackler School of Physics and Astronomy Tel Aviv University)
- Abstract summary: Berry phases have long been known to significantly alter the properties of periodic systems.
In non-Hermitian systems, generalizations of the Berry connection have been proposed and shown to have novel effects on dynamics and transport.
We show that the non-Hermiticities of both the band Hamiltonian and the external potential give rise to anomalous weight rate and velocity terms.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Berry phases have long been known to significantly alter the properties of
periodic systems, giving rise to anomalous terms in the semiclassical equations
of motion describing wave-packet dynamics. In non-Hermitian systems,
generalizations of the Berry connection have been proposed and shown to have
novel effects on dynamics and transport. In this work, we expand upon these
results by deriving the full set of semiclassical equations of motion for
wave-packet dynamics in a non-Hermitian system subject to complex external
electric fields, which are realizable as gain gradients. We show that the
non-Hermiticities of both the band Hamiltonian and the external potential give
rise to anomalous weight rate and velocity terms which depend on the geometric
properties of the eigenfunctions, including the quantum metric tensor. These
analytical results are compared with numerical lattice simulations which reveal
these anomalous terms even in one-dimension. Our work expands the range of
phenomena expected to be detectable in experimental setups, which should be
realizable in currently available metamaterials and classical wave systems,
including mechanical, acoustic, and optical.
Related papers
- Markovian dynamics for a quantum/classical system and quantum trajectories [0.0]
We develop a general approach to the dynamics of quantum/classical systems.
An important feature is that, if the interaction allows for a flow of information from the quantum component to the classical one, necessarily the dynamics is dissipative.
arXiv Detail & Related papers (2024-03-24T08:26:54Z) - Quantized Thouless pumps protected by interactions in dimerized Rydberg tweezer arrays [41.94295877935867]
In the noninteracting case, quantized Thouless pumps can only occur when a topological singularity is encircled adiabatically.
In the presence of interactions, such topological transport can even persist for exotic paths in which the system gets arbitrarily close to the noninteracting singularity.
arXiv Detail & Related papers (2024-02-14T16:58:21Z) - Semiclassical descriptions of dissipative dynamics of strongly interacting Bose gases in optical lattices [0.0]
We develop methods for describing real-time dynamics of dissipative Bose-Hubbard systems in a strongly interacting regime.
We numerically demonstrate that the discrete TWA approach is able to qualitatively capture the continuous quantum Zeno effect on dynamics.
arXiv Detail & Related papers (2023-07-30T08:39:06Z) - Non-equilibrium quantum probing through linear response [41.94295877935867]
We study the system's response to unitary perturbations, as well as non-unitary perturbations, affecting the properties of the environment.
We show that linear response, combined with a quantum probing approach, can effectively provide valuable quantitative information about the perturbation and characteristics of the environment.
arXiv Detail & Related papers (2023-06-14T13:31:23Z) - Mean-field dynamics of open quantum systems with collective
operator-valued rates: validity and application [0.0]
We consider a class of open quantum many-body Lindblad dynamics characterized by an all-to-all coupling Hamiltonian.
We study the time evolution in the limit of infinitely large systems, and we demonstrate the exactness of the mean-field equations for the dynamics of average operators.
Our results allow for a rigorous and systematic investigation of the impact of quantum effects on paradigmatic classical models.
arXiv Detail & Related papers (2023-02-08T15:58:39Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Engineering Dissipative Quasicrystals [7.182858821473896]
We discuss the systematic engineering of quasicrystals in open quantum systems where quasiperiodicity is introduced through purely dissipative processes.
Our work suggests a systematic route toward engineering exotic quantum dynamics in open systems, based on insights of non-Hermitian physics.
arXiv Detail & Related papers (2021-11-29T10:35:34Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Berry connection induced anomalous wave-packet dynamics in non-Hermitian
systems [0.0]
Berry phases strongly affect the properties of crystalline materials.
In non-Hermitian systems, generalizations of the Berry connection have been analyzed.
We show that non-Hermiticity is manifested in anomalous weight rate and velocity terms.
arXiv Detail & Related papers (2020-04-28T18:00:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.