論文の概要: Bayesian Optimization for auto-tuning GPU kernels
- arxiv url: http://arxiv.org/abs/2111.14991v1
- Date: Fri, 26 Nov 2021 11:26:26 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-01 16:51:20.687804
- Title: Bayesian Optimization for auto-tuning GPU kernels
- Title(参考訳): 自動チューニングGPUカーネルのベイズ最適化
- Authors: Floris-Jan Willemsen, Rob van Nieuwpoort, Ben van Werkhoven
- Abstract要約: GPUカーネルの最適パラメータ設定を見つけることは、たとえ自動化されても、大規模な検索スペースにとって簡単な作業ではない。
拡張性を改善した新しい文脈探索機能と,情報機能選択機構を併用した新しい獲得機能を導入する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Finding optimal parameter configurations for tunable GPU kernels is a
non-trivial exercise for large search spaces, even when automated. This poses
an optimization task on a non-convex search space, using an expensive to
evaluate function with unknown derivative. These characteristics make a good
candidate for Bayesian Optimization, which has not been applied to this problem
before. However, the application of Bayesian Optimization to this problem is
challenging. We demonstrate how to deal with the rough, discrete, constrained
search spaces, containing invalid configurations. We introduce a novel
contextual variance exploration factor, as well as new acquisition functions
with improved scalability, combined with an informed acquisition function
selection mechanism. By comparing the performance of our Bayesian Optimization
implementation on various test cases to the existing search strategies in
Kernel Tuner, as well as other Bayesian Optimization implementations, we
demonstrate that our search strategies generalize well and consistently
outperform other search strategies by a wide margin.
- Abstract(参考訳): チューニング可能なgpuカーネルの最適なパラメータ設定を見つけることは、自動化された場合でも、大きな検索スペースに対して非自明な作業である。
これは非凸探索空間上の最適化タスクとなり、未知導関数を持つ高コストな評価関数を使用する。
これらの特徴はベイズ最適化の候補となり、この問題にはこれまで適用されていない。
しかし,この問題に対するベイズ最適化の適用は困難である。
不正な構成を含む粗末で離散的で制約のある検索空間をどう扱うかを示す。
本稿では,新しい文脈分散探索係数と,拡張性の向上した新たな獲得関数と,情報獲得関数選択機構を導入する。
種々のテストケースにおけるベイズ最適化実装の性能を、ケルネルタナーの既存の検索戦略や他のベイズ最適化実装と比較することにより、我々の検索戦略がより広く、一貫して他の検索戦略より優れていることを示す。
関連論文リスト
- Optimizing Posterior Samples for Bayesian Optimization via Rootfinding [2.94944680995069]
我々は,グローバルなルートフィンディングに基づく後方サンプルの効率的な大域的最適化手法を提案する。
内ループ最適化と外ループ最適化の両方において顕著な改善が示された。
GP-TSのサンプル平均定式化も提案する。
論文 参考訳(メタデータ) (2024-10-29T17:57:16Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
統計的決定論の研究からシャノンエントロピーの一般化を考える。
まず,このエントロピーの特殊なケースがBO手順でよく用いられる獲得関数に繋がることを示す。
次に、損失に対する選択肢の選択が、どのようにして柔軟な獲得関数の族をもたらすかを示す。
論文 参考訳(メタデータ) (2022-10-04T04:43:58Z) - Efficient Non-Parametric Optimizer Search for Diverse Tasks [93.64739408827604]
興味のあるタスクを直接検索できる,スケーラブルで汎用的なフレームワークを初めて提示する。
基礎となる数学表現の自然木構造に着想を得て、空間を超木に再配置する。
我々は,モンテカルロ法を木探索に適用し,レジェクションサンプリングと等価形状検出を備える。
論文 参考訳(メタデータ) (2022-09-27T17:51:31Z) - Optimistic Optimization of Gaussian Process Samples [30.226274682578172]
競合する、計算的により効率的でグローバルな最適化フレームワークは楽観的な最適化であり、これは探索空間の幾何学に関する事前知識を相似関数として利用している。
幾何的探索と確率的探索の間には新たな研究領域があり、ベイズ最適化の重要な機能を保ちながら、従来のベイズ最適化よりも大幅に高速に実行される方法がある。
論文 参考訳(メタデータ) (2022-09-02T09:06:24Z) - Bayesian Optimization over Permutation Spaces [30.650753803587794]
BOPS (Permutation Spaces) に対する2つのアルゴリズムの提案と評価を行った。
BOPS-Tの性能を理論的に解析し,その後悔がサブリニアに増加することを示す。
複数の合成および実世界のベンチマーク実験により、BOPS-TとBOPS-Hは、空間に対する最先端のBOアルゴリズムよりも優れた性能を示した。
論文 参考訳(メタデータ) (2021-12-02T08:20:50Z) - Fighting the curse of dimensionality: A machine learning approach to
finding global optima [77.34726150561087]
本稿では,構造最適化問題におけるグローバル最適化の方法を示す。
特定のコスト関数を利用することで、最適化手順が確立された場合と比較して、グローバルをベストに得るか、最悪の場合、優れた結果を得るかのどちらかを得る。
論文 参考訳(メタデータ) (2021-10-28T09:50:29Z) - Sequential Subspace Search for Functional Bayesian Optimization
Incorporating Experimenter Intuition [63.011641517977644]
本アルゴリズムは,実験者のガウス過程から引き出された一組の引き数で区切られた関数空間の有限次元ランダム部分空間列を生成する。
標準ベイズ最適化は各部分空間に適用され、次の部分空間の出発点(オリジン)として用いられる最良の解である。
シミュレーションおよび実世界の実験,すなわちブラインド関数マッチング,アルミニウム合金の最適析出強化関数の探索,深層ネットワークの学習速度スケジュール最適化において,本アルゴリズムを検証した。
論文 参考訳(メタデータ) (2020-09-08T06:54:11Z) - NOVAS: Non-convex Optimization via Adaptive Stochastic Search for
End-to-End Learning and Control [22.120942106939122]
本稿では,一般のニューラルネットワーク最適化操作において,適応探索をビルディングブロックとして用いることを提案する。
我々は、合成エネルギーベースの構造化タスクにおける既存の2つの代替案に対してベンチマークを行い、最適制御アプリケーションでの使用例を示す。
論文 参考訳(メタデータ) (2020-06-22T03:40:36Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z) - Incorporating Expert Prior in Bayesian Optimisation via Space Warping [54.412024556499254]
大きな探索空間では、アルゴリズムは関数の最適値に達する前に、いくつかの低関数値領域を通過する。
このコールドスタートフェーズの1つのアプローチは、最適化を加速できる事前知識を使用することである。
本稿では,関数の事前分布を通じて,関数の最適性に関する事前知識を示す。
先行分布は、探索空間を最適関数の高確率領域の周りに拡張し、最適関数の低確率領域の周りに縮小するようにワープする。
論文 参考訳(メタデータ) (2020-03-27T06:18:49Z) - Towards Automatic Bayesian Optimization: A first step involving
acquisition functions [0.0]
ベイズ最適化 (Bayesian optimization) は、ブラックボックスの最適化、すなわち解析的表現にアクセスできない関数の最先端技術である。
獲得関数を自動調整するいくつかの手法を探索し,自動ベイズ最適化に対する最初の試みを提案する。
論文 参考訳(メタデータ) (2020-03-21T12:22:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。