論文の概要: Binary Independent Component Analysis via Non-stationarity
- arxiv url: http://arxiv.org/abs/2111.15431v1
- Date: Tue, 30 Nov 2021 14:23:53 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-01 13:54:58.589703
- Title: Binary Independent Component Analysis via Non-stationarity
- Title(参考訳): 非定常性による二元独立成分分析
- Authors: Antti Hyttinen, Vit\'oria Barin-Pacela, Aapo Hyv\"arinen
- Abstract要約: 本稿では,バイナリデータの独立成分分析について考察する。
まず,線形混合モデルを連続値の潜在空間に仮定し,次に2値の観測モデルを仮定する。
連続値の場合とは対照的に、観測変数が少ないモデルの非識別性を証明する。
- 参考スコア(独自算出の注目度): 7.283533791778359
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider independent component analysis of binary data. While fundamental
in practice, this case has been much less developed than ICA for continuous
data. We start by assuming a linear mixing model in a continuous-valued latent
space, followed by a binary observation model. Importantly, we assume that the
sources are non-stationary; this is necessary since any non-Gaussianity would
essentially be destroyed by the binarization. Interestingly, the model allows
for closed-form likelihood by employing the cumulative distribution function of
the multivariate Gaussian distribution. In stark contrast to the
continuous-valued case, we prove non-identifiability of the model with few
observed variables; our empirical results imply identifiability when the number
of observed variables is higher. We present a practical method for binary ICA
that uses only pairwise marginals, which are faster to compute than the full
multivariate likelihood.
- Abstract(参考訳): バイナリデータの独立成分分析について考察する。
実際には基本的には、このケースは連続データのためのicaよりも開発がはるかに少ない。
まず,線形混合モデルを連続値の潜在空間に仮定し,次に2値の観測モデルを仮定する。
重要なことに、この情報源は非定常であると仮定するが、これは非ガウス性は本質的にバイナライゼーションによって破壊されるためである。
興味深いことに、モデルは多変量ガウス分布の累積分布関数を利用することで閉形式可能性を実現する。
連続評価の場合とは対照的に、観測変数が少ないモデルでは非識別性が証明され、観測変数の数が増えると実験結果が識別可能であることが示唆される。
本稿では,多変量確率よりも高速に計算可能な,ペアワイズ限界のみを用いる二元ICAの実用的手法を提案する。
関連論文リスト
- Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis [56.442307356162864]
連続時間マルコフ連鎖(CTMC)に基づくスコアベース離散拡散モデルの理論的側面について検討する。
本稿では,事前定義された時間点におけるスコア推定値を利用する離散時間サンプリングアルゴリズムを一般状態空間$[S]d$に導入する。
我々の収束解析はジルサノフ法を用いて離散スコア関数の重要な性質を確立する。
論文 参考訳(メタデータ) (2024-10-03T09:07:13Z) - Detection of Unobserved Common Causes based on NML Code in Discrete,
Mixed, and Continuous Variables [1.5039745292757667]
2つの確率変数間の因果関係を次の4つのカテゴリに分類する。
我々は,CLOUDが,合成データと実世界のデータの両方に関する広範な実験により因果関係を推定する既存手法よりも有効であることを示す。
論文 参考訳(メタデータ) (2024-03-11T08:11:52Z) - Towards Faster Non-Asymptotic Convergence for Diffusion-Based Generative
Models [49.81937966106691]
我々は拡散モデルのデータ生成過程を理解するための非漸近理論のスイートを開発する。
従来の研究とは対照的に,本理論は基本的だが多目的な非漸近的アプローチに基づいて開発されている。
論文 参考訳(メタデータ) (2023-06-15T16:30:08Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
連続時間マルコフ連鎖を介して逆過程が認知されるマルコフジャンププロセスを導入することにより、拡散モデルを離散変数に拡張する。
条件境界分布の単純なマッチングにより、偏りのない推定器が得られることを示す。
提案手法の有効性を,合成および実世界の音楽と画像のベンチマークで示す。
論文 参考訳(メタデータ) (2022-11-30T05:33:29Z) - Bayesian Nonlocal Operator Regression (BNOR): A Data-Driven Learning
Framework of Nonlocal Models with Uncertainty Quantification [4.705624984585247]
ミクロスケールの力学と相互作用が世界的挙動に影響を及ぼす異種材料をモデル化する問題を考える。
非局所モデルを用いた材料応答予測における不確実性(UQ)のためのベイズフレームワークを開発する。
この研究は、ホモジェナイゼーションの文脈における非局所モデル差の統計的特徴付けへの第一歩である。
論文 参考訳(メタデータ) (2022-10-06T22:37:59Z) - On the detrimental effect of invariances in the likelihood for
variational inference [21.912271882110986]
変分ベイズ後部推論は、トラクタビリティを確保するために平均場パラメトリゼーションのような近似を単純化する必要があることが多い。
これまでの研究は、ベイズニューラルネットワークの変動平均場近似と、小さなデータセットや大きなモデルサイズの場合の不適合を関連付けてきた。
論文 参考訳(メタデータ) (2022-09-15T09:13:30Z) - On the Strong Correlation Between Model Invariance and Generalization [54.812786542023325]
一般化は、見えないデータを分類するモデルの能力をキャプチャする。
不変性はデータの変換におけるモデル予測の一貫性を測定する。
データセット中心の視点から、あるモデルの精度と不変性は異なるテストセット上で線形に相関している。
論文 参考訳(メタデータ) (2022-07-14T17:08:25Z) - Nonparametric Conditional Local Independence Testing [69.31200003384122]
条件付き局所独立は、連続的な時間プロセス間の独立関係である。
条件付き地域独立の非パラメトリックテストは行われていない。
二重機械学習に基づく非パラメトリックテストを提案する。
論文 参考訳(メタデータ) (2022-03-25T10:31:02Z) - Exploiting Independent Instruments: Identification and Distribution
Generalization [3.701112941066256]
我々は、より高い瞬間を考慮に入れ、分布一般化の独立性を利用する。
提案した推定器は楽器の分布シフトに不変であることを示す。
これらの結果は、楽器が因果関数を識別するのに十分な豊かでない場合においても成り立つ。
論文 参考訳(メタデータ) (2022-02-03T21:49:04Z) - Nonlinear Independent Component Analysis for Continuous-Time Signals [85.59763606620938]
このプロセスの混合物の観察から多次元音源過程を復元する古典的問題を考察する。
このリカバリは、この混合物が十分に微分可能で可逆な関数によって与えられる場合、多くの一般的なプロセスのモデル(座標の順序と単調スケーリングまで)に対して可能であることを示す。
論文 参考訳(メタデータ) (2021-02-04T20:28:44Z) - Binary Classification of Gaussian Mixtures: Abundance of Support
Vectors, Benign Overfitting and Regularization [39.35822033674126]
生成ガウス混合モデルに基づく二項線形分類について検討する。
後者の分類誤差に関する新しい非漸近境界を導出する。
この結果は, 確率が一定である雑音モデルに拡張される。
論文 参考訳(メタデータ) (2020-11-18T07:59:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。