Dissipative superradiant spin amplifier for enhanced quantum sensing
- URL: http://arxiv.org/abs/2111.15647v3
- Date: Sun, 4 Dec 2022 00:54:04 GMT
- Title: Dissipative superradiant spin amplifier for enhanced quantum sensing
- Authors: Martin Koppenh\"ofer, Peter Groszkowski, Hoi-Kwan Lau, A. A. Clerk
- Abstract summary: We present a dissipative "spin amplification" protocol that allows one to dramatically improve the sensitivity of such schemes.
Our method is based on exploiting collective (i.e., superradiant) spin decay.
We show that our approach can allow a system with a highly imperfect spin readout to approach $N$ within a factor of two, without needing to change the actual readout mechanism.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum metrology protocols exploiting ensembles of $N$ two-level systems and
Ramsey-style measurements are ubiquitous. However, in many cases excess readout
noise severely degrades the measurement sensitivity; in particular in sensors
based on ensembles of solid-state defect spins. We present a dissipative "spin
amplification" protocol that allows one to dramatically improve the sensitivity
of such schemes, even in the presence of realistic intrinsic dissipation and
noise. Our method is based on exploiting collective (i.e., superradiant) spin
decay, an effect that is usually seen as a nuisance because it limits
spin-squeezing protocols. We show that our approach can allow a system with a
highly imperfect spin readout to approach SQL-like scaling in $N$ within a
factor of two, without needing to change the actual readout mechanism. Our
ideas are compatible with several state-of-the-art experimental platforms where
an ensemble of solid-state spins (NV centers, SiV centers) is coupled to a
common microwave or mechanical mode.
Related papers
- Control of an environmental spin defect beyond the coherence limit of a central spin [79.16635054977068]
We present a scalable approach to increase the size of electronic-spin registers.
We experimentally realize this approach to demonstrate the detection and coherent control of an unknown electronic spin outside the coherence limit of a central NV.
Our work paves the way for engineering larger quantum spin registers with the potential to advance nanoscale sensing, enable correlated noise spectroscopy for error correction, and facilitate the realization of spin-chain quantum wires for quantum communication.
arXiv Detail & Related papers (2023-06-29T17:55:16Z) - Squeezed superradiance enables robust entanglement-enhanced metrology
even with highly imperfect readout [0.0]
We propose a new dissipative protocol that combines amplification and squeezed fluctuations.
It enables the use of entangled spin states for sensing well beyond the standard quantum limit.
It has a strong resilience against undesired single-spin dissipation, requiring only a large collective cooperativity to be effective.
arXiv Detail & Related papers (2023-04-11T19:38:48Z) - Dissipative preparation and stabilization of many-body quantum states in
a superconducting qutrit array [55.41644538483948]
We present and analyze a protocol for driven-dissipatively preparing and stabilizing a manifold of quantum manybody entangled states.
We perform theoretical modeling of this platform via pulse-level simulations based on physical features of real devices.
Our work shows the capacity of driven-dissipative superconducting cQED systems to host robust and self-corrected quantum manybody states.
arXiv Detail & Related papers (2023-03-21T18:02:47Z) - Quantum Fluctuation Dynamics of Dispersive Superradiant Pulses in a
Hybrid Light-Matter System [0.0]
We consider theoretically a driven-dissipative quantum many-body system consisting of an atomic ensemble in a single-mode optical cavity.
In this hybrid light-matter system the interplay between coherent and dissipative processes leads to superradiant pulses with a build-up of strong correlations.
arXiv Detail & Related papers (2023-02-16T04:34:33Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Exact solutions for a spin-orbit coupled bosonic double-well system [5.412119592723349]
We generate analytic exact solutions for an SO-coupled boson held in a driven double well.
Results have potential applications in the preparation of accurate quantum entangled states and quantum information processing.
arXiv Detail & Related papers (2022-10-25T02:43:25Z) - Gate-based spin readout of hole quantum dots with site-dependent
$g-$factors [101.23523361398418]
We experimentally investigate a hole double quantum dot in silicon by carrying out spin readout with gate-based reflectometry.
We show that characteristic features in the reflected phase signal arising from magneto-spectroscopy convey information on site-dependent $g-$factors in the two dots.
arXiv Detail & Related papers (2022-06-27T09:07:20Z) - Fast high-fidelity single-shot readout of spins in silicon using a
single-electron box [0.5455889233228607]
We present two demonstrations of fast high-fidelity single-shot readout of spins in silicon quantum dots using a compact, dispersive charge sensor.
The sensor, despite requiring fewer electrodes than conventional detectors, performs at the state-of-the-art achieving spin read-out fidelity of 99.2% in less than 6 $mu$s.
arXiv Detail & Related papers (2022-03-13T09:38:31Z) - Intrinsic mechanisms for drive-dependent Purcell decay in
superconducting quantum circuits [68.8204255655161]
We find that in a wide range of settings, the cavity-qubit detuning controls whether a non-zero photonic population increases or decreases qubit decay Purcell.
Our method combines insights from a Keldysh treatment of the system, and Lindblad theory.
arXiv Detail & Related papers (2021-06-09T16:21:31Z) - Reservoir-engineered spin squeezing: macroscopic even-odd effects and
hybrid-systems implementations [0.0]
We revisit the dissipative approach to producing and stabilizing spin-squeezed states of an ensemble of $N$ two-level systems.
We discuss two surprising yet generic features of such protocols.
arXiv Detail & Related papers (2021-04-21T06:04:43Z) - Superposition of two-mode squeezed states for quantum information
processing and quantum sensing [55.41644538483948]
We investigate superpositions of two-mode squeezed states (TMSSs)
TMSSs have potential applications to quantum information processing and quantum sensing.
arXiv Detail & Related papers (2021-02-01T18:09:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.