Synthetic Design: An Optimization Approach to Experimental Design with
Synthetic Controls
- URL: http://arxiv.org/abs/2112.00278v1
- Date: Wed, 1 Dec 2021 05:05:26 GMT
- Title: Synthetic Design: An Optimization Approach to Experimental Design with
Synthetic Controls
- Authors: Nick Doudchenko, Khashayar Khosravi, Jean Pouget-Abadie, Sebastien
Lahaie, Miles Lubin, Vahab Mirrokni, Jann Spiess, Guido Imbens
- Abstract summary: We investigate the optimal design of experimental studies that have pre-treatment outcome data available.
The average treatment effect is estimated as the difference between the weighted average outcomes of the treated and control units.
We propose several methods for choosing the set of treated units in conjunction with the weights.
- Score: 5.3063411515511065
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the optimal design of experimental studies that have
pre-treatment outcome data available. The average treatment effect is estimated
as the difference between the weighted average outcomes of the treated and
control units. A number of commonly used approaches fit this formulation,
including the difference-in-means estimator and a variety of synthetic-control
techniques. We propose several methods for choosing the set of treated units in
conjunction with the weights. Observing the NP-hardness of the problem, we
introduce a mixed-integer programming formulation which selects both the
treatment and control sets and unit weightings. We prove that these proposed
approaches lead to qualitatively different experimental units being selected
for treatment. We use simulations based on publicly available data from the US
Bureau of Labor Statistics that show improvements in terms of mean squared
error and statistical power when compared to simple and commonly used
alternatives such as randomized trials.
Related papers
- Adaptive Instrument Design for Indirect Experiments [48.815194906471405]
Unlike RCTs, indirect experiments estimate treatment effects by leveragingconditional instrumental variables.
In this paper we take the initial steps towards enhancing sample efficiency for indirect experiments by adaptively designing a data collection policy.
Our main contribution is a practical computational procedure that utilizes influence functions to search for an optimal data collection policy.
arXiv Detail & Related papers (2023-12-05T02:38:04Z) - Comparison of Methods that Combine Multiple Randomized Trials to
Estimate Heterogeneous Treatment Effects [0.1398098625978622]
Leveraging multiple randomized controlled trials allows for the combination of datasets with unconfounded treatment assignment.
This paper discusses several non-parametric approaches for estimating heterogeneous treatment effects using data from multiple trials.
arXiv Detail & Related papers (2023-03-28T20:43:00Z) - TCFimt: Temporal Counterfactual Forecasting from Individual Multiple
Treatment Perspective [50.675845725806724]
We propose a comprehensive framework of temporal counterfactual forecasting from an individual multiple treatment perspective (TCFimt)
TCFimt constructs adversarial tasks in a seq2seq framework to alleviate selection and time-varying bias and designs a contrastive learning-based block to decouple a mixed treatment effect into separated main treatment effects and causal interactions.
The proposed method shows satisfactory performance in predicting future outcomes with specific treatments and in choosing optimal treatment type and timing than state-of-the-art methods.
arXiv Detail & Related papers (2022-12-17T15:01:05Z) - Synthetic Principal Component Design: Fast Covariate Balancing with
Synthetic Controls [16.449993388646277]
We develop a globally convergent and practically efficient optimization algorithm.
We establish the first global optimality guarantee for experiment design when pre-treatment data is sampled from certain data-generating processes.
arXiv Detail & Related papers (2022-11-28T11:45:54Z) - Weighting-Based Treatment Effect Estimation via Distribution Learning [14.438302755258547]
We develop a distribution learning-based weighting method for treatment effect estimation.
Our method outperforms several cutting-edge weighting-only benchmarking methods.
It maintains its advantage under a doubly-robust estimation framework.
arXiv Detail & Related papers (2020-12-26T20:15:44Z) - Double machine learning for sample selection models [0.12891210250935145]
This paper considers the evaluation of discretely distributed treatments when outcomes are only observed for a subpopulation due to sample selection or outcome attrition.
We make use of (a) Neyman-orthogonal, doubly robust, and efficient score functions, which imply the robustness of treatment effect estimation to moderate regularization biases in the machine learning-based estimation of the outcome, treatment, or sample selection models and (b) sample splitting (or cross-fitting) to prevent overfitting bias.
arXiv Detail & Related papers (2020-11-30T19:40:21Z) - Optimal Bayesian experimental design for subsurface flow problems [77.34726150561087]
We propose a novel approach for development of chaos expansion (PCE) surrogate model for the design utility function.
This novel technique enables the derivation of a reasonable quality response surface for the targeted objective function with a computational budget comparable to several single-point evaluations.
arXiv Detail & Related papers (2020-08-10T09:42:59Z) - Bloom Origami Assays: Practical Group Testing [90.2899558237778]
Group testing is a well-studied problem with several appealing solutions.
Recent biological studies impose practical constraints for COVID-19 that are incompatible with traditional methods.
We develop a new method combining Bloom filters with belief propagation to scale to larger values of n (more than 100) with good empirical results.
arXiv Detail & Related papers (2020-07-21T19:31:41Z) - Almost-Matching-Exactly for Treatment Effect Estimation under Network
Interference [73.23326654892963]
We propose a matching method that recovers direct treatment effects from randomized experiments where units are connected in an observed network.
Our method matches units almost exactly on counts of unique subgraphs within their neighborhood graphs.
arXiv Detail & Related papers (2020-03-02T15:21:20Z) - Efficient Adaptive Experimental Design for Average Treatment Effect
Estimation [18.027128141189355]
We propose an algorithm for efficient experiments with estimators constructed from dependent samples.
To justify our proposed approach, we provide finite and infinite sample analyses.
arXiv Detail & Related papers (2020-02-13T02:04:17Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
We study estimation of individual-level causal effects, such as a single patient's response to alternative medication.
We devise representation learning algorithms that minimize our bound, by regularizing the representation's induced treatment group distance.
We extend these algorithms to simultaneously learn a weighted representation to further reduce treatment group distances.
arXiv Detail & Related papers (2020-01-21T10:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.