論文の概要: Roadmap for Edge AI: A Dagstuhl Perspective
- arxiv url: http://arxiv.org/abs/2112.00616v1
- Date: Sat, 27 Nov 2021 16:48:20 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-02 15:28:13.724101
- Title: Roadmap for Edge AI: A Dagstuhl Perspective
- Title(参考訳): Edge AIのロードマップ - Dagstuhl氏の見解
- Authors: Aaron Yi Ding, Ella Peltonen, Tobias Meuser, Atakan Aral, Christian
Becker, Schahram Dustdar, Thomas Hiessl, Dieter Kranzlmuller, Madhusanka
Liyanage, Setareh Magshudi, Nitinder Mohan, Joerg Ott, Jan S. Rellermeyer,
Stefan Schulte, Henning Schulzrinne, Gurkan Solmaz, Sasu Tarkoma, Blesson
Varghese, Lars Wolf
- Abstract要約: Edge AIは、データ駆動アプリケーションへの適応を提供し、ネットワークと無線アクセスを強化し、分散AI/MLパイプラインの作成、最適化、デプロイを可能にします。
目標は、主要なアクターとイネーブラーをまとめてEdge AIのドメインをさらに前進させる、計画されたロードマップを共有することだ。
- 参考スコア(独自算出の注目度): 7.871316017033928
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Based on the collective input of Dagstuhl Seminar (21342), this paper
presents a comprehensive discussion on AI methods and capabilities in the
context of edge computing, referred as Edge AI. In a nutshell, we envision Edge
AI to provide adaptation for data-driven applications, enhance network and
radio access, and allow the creation, optimization, and deployment of
distributed AI/ML pipelines with given quality of experience, trust, security
and privacy targets. The Edge AI community investigates novel ML methods for
the edge computing environment, spanning multiple sub-fields of computer
science, engineering and ICT. The goal is to share an envisioned roadmap that
can bring together key actors and enablers to further advance the domain of
Edge AI.
- Abstract(参考訳): 本稿では,Dagtuhl Seminar (21342) の総合的な入力に基づき,エッジAI(エッジAI)と呼ばれるエッジコンピューティングの文脈におけるAI手法と能力に関する包括的議論を行う。
簡単に言うと、Edge AIは、データ駆動アプリケーションへの適応を提供し、ネットワークと無線アクセスを強化し、所定の品質のエクスペリエンス、信頼性、セキュリティ、プライバシの目標を備えた分散AI/MLパイプラインの作成、最適化、デプロイを可能にします。
Edge AIコミュニティは、エッジコンピューティング環境のための新しいMLメソッドを調査し、コンピュータサイエンス、エンジニアリング、ICTの複数のサブフィールドにまたがる。
目標は、主要なアクターとイネーブラーがEdge AIのドメインをさらに前進させるためのロードマップを共有することだ。
関連論文リスト
- Networking Systems for Video Anomaly Detection: A Tutorial and Survey [55.28514053969056]
ビデオ異常検出(VAD)は人工知能(AI)コミュニティにおける基本的な研究課題である。
本稿では,各種深層学習駆動型VAD経路の基本前提,学習フレームワーク,適用シナリオについて述べる。
我々は、産業用IoTおよびスマート都市における最新のNSVAD研究と、デプロイ可能なNSVADのためのエンドクラウド共同アーキテクチャを紹介します。
論文 参考訳(メタデータ) (2024-05-16T02:00:44Z) - The Ethics of Advanced AI Assistants [53.89899371095332]
本稿では,高度AIアシスタントがもたらす倫理的・社会的リスクについて論じる。
我々は、高度なAIアシスタントを自然言語インタフェースを持つ人工知能エージェントとして定義し、ユーザに代わってアクションのシーケンスを計画し実行することを目的としている。
先進的なアシスタントの社会規模での展開を考察し、協力、株式とアクセス、誤情報、経済的影響、環境、先進的なAIアシスタントの評価方法に焦点をあてる。
論文 参考訳(メタデータ) (2024-04-24T23:18:46Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC)は、クラウドコンピューティングと情報技術(IT)サービスをネットワークのエッジで配信できるようにする新しいコンピューティングパラダイムである。
本稿では,人工知能(AI)の観点からMECのセキュリティとプライバシに関する調査を行う。
新たなセキュリティとプライバシの問題に加えて、AIの観点からの潜在的なソリューションにも重点を置いています。
論文 参考訳(メタデータ) (2024-01-03T07:47:22Z) - Edge AI for Internet of Energy: Challenges and Perspectives [5.267662071764103]
The Digital landscape of the Internet of Energy (IoE) is on thebrink of a revolution transformation with the integration of edge Artificial Intelligence (AI)
この包括的なレビューは、エッジAIがIoEエコシステムを再構築する可能性と可能性を解明するものだ。
論文 参考訳(メタデータ) (2023-11-28T15:01:56Z) - Large Language Models Empowered Autonomous Edge AI for Connected
Intelligence [51.269276328087855]
エッジ人工知能(Edge AI)は、コネクテッドインテリジェンスを実現するための有望なソリューションである。
この記事では、ユーザのさまざまな要件を満たすために自動的に組織化し、適応し、最適化する、自律的なエッジAIシステムのビジョンを示す。
論文 参考訳(メタデータ) (2023-07-06T05:16:55Z) - Integrated Sensing-Communication-Computation for Edge Artificial Intelligence [41.611639821262415]
統合センシング通信計算(I SCC)は,資源利用の向上に最重要課題である。
本稿では、エッジ学習タスクとエッジAI推論タスクをアプリケーション層と物理層の両方で行うための各種のISCCスキームについて述べる。
論文 参考訳(メタデータ) (2023-06-01T21:35:20Z) - A Comprehensive Review and a Taxonomy of Edge Machine Learning:
Requirements, Paradigms, and Techniques [5.964672966134971]
エッジコンピューティング(EC)と人工知能(AI)の連合は、エッジAIの概念を推進し、エンドユーザ環境に近いインテリジェントなソリューションを提供した。
機械学習(ML)は、ここ数年でAIの最も先進的な分野であり、エッジ環境における奨励的な結果と応用を示している。
本稿では,Edge ML技術に関する包括的分類と体系的レビューを提供することを目的とする。
論文 参考訳(メタデータ) (2023-02-16T20:33:33Z) - Edge Artificial Intelligence for 6G: Vision, Enabling Technologies, and
Applications [39.223546118441476]
6Gはワイヤレスの進化を「コネクテッドモノ」から「コネクテッドインテリジェンス」に変革する
ディープラーニングとビッグデータ分析に基づくAIシステムは、膨大な計算と通信資源を必要とする。
エッジAIは、センサー、通信、計算、インテリジェンスをシームレスに統合する6Gの破壊的技術として際立っている。
論文 参考訳(メタデータ) (2021-11-24T11:47:16Z) - Edge-Cloud Polarization and Collaboration: A Comprehensive Survey [61.05059817550049]
クラウドとエッジ両方のAIの体系的なレビューを行います。
私たちはクラウドとエッジモデリングの協調学習メカニズムを最初にセットアップしました。
我々は現在進行中の最先端AIトピックの可能性と実践経験について議論する。
論文 参考訳(メタデータ) (2021-11-11T05:58:23Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
AIがIoTをより速く、より賢く、よりグリーンで、より安全にするための力を与える方法を示します。
まず、認識、学習、推論、行動の4つの視点から、IoTのためのAI研究の進歩を示す。
最後に、私たちの世界を深く再形成する可能性が高いAIoTの有望な応用をいくつかまとめる。
論文 参考訳(メタデータ) (2020-11-17T13:14:28Z) - Communication-Efficient Edge AI: Algorithms and Systems [39.28788394839187]
エッジデバイス(IoTデバイスなど)の大規模展開は、前例のない規模のデータを生成する。
このような巨大なデータはすべて、処理のためにエンドデバイスからクラウドに送信することはできない。
AIモデルの推論とトレーニングプロセスをエッジノードにプッシュすることで、エッジAIは有望な代替手段として浮上した。
論文 参考訳(メタデータ) (2020-02-22T09:27:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。