論文の概要: Collaborative AI Needs Stronger Assurances Driven by Risks
- arxiv url: http://arxiv.org/abs/2112.00740v1
- Date: Wed, 1 Dec 2021 15:24:21 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-03 16:45:04.973993
- Title: Collaborative AI Needs Stronger Assurances Driven by Risks
- Title(参考訳): コラボレーションAIはリスクによって駆動されるより強い保証を必要とする
- Authors: Jubril Gbolahan Adigun, Matteo Camilli, Michael Felderer, Andrea
Giusti, Dominik T Matt, Anna Perini, Barbara Russo, Angelo Susi
- Abstract要約: 共同AIシステム(CAIS)は、共通の目標を達成するために、共有空間で人間と協力することを目的としている。
要件やドメイン固有の標準、規制の遵守を強く保証したシステムを構築することが、最も重要なのです。
- 参考スコア(独自算出の注目度): 5.657409854809804
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Collaborative AI systems (CAISs) aim at working together with humans in a
shared space to achieve a common goal. This critical setting yields hazardous
circumstances that could harm human beings. Thus, building such systems with
strong assurances of compliance with requirements, domain-specific standards
and regulations is of greatest importance. Only few scale impact has been
reported so far for such systems since much work remains to manage possible
risks. We identify emerging problems in this context and then we report our
vision, as well as the progress of our multidisciplinary research team composed
of software/systems, and mechatronics engineers to develop a risk-driven
assurance process for CAISs.
- Abstract(参考訳): 共同AIシステム(CAIS)は、共通の目標を達成するために、共有空間で人間と協力することを目的としている。
この決定的な設定は、人間に危害を与える可能性のある危険な状況をもたらす。
したがって、要件、ドメイン固有の標準、規制に強く準拠したシステムを構築することが、最も重要である。
リスク管理に多くの作業が残っているため、このようなシステムに対する大規模な影響は報告されていない。
この文脈における新興問題を特定し、CAISのリスク駆動保証プロセスを開発するために、ソフトウェア/システムとメカトロニクスエンジニアで構成される多分野の研究チームの進捗を報告します。
関連論文リスト
- HAICOSYSTEM: An Ecosystem for Sandboxing Safety Risks in Human-AI Interactions [76.42274173122328]
本稿では,多様な複雑な社会的相互作用におけるAIエージェントの安全性を調べるフレームワークであるHAICOSYSTEMを提案する。
私たちは7つの領域(医療、金融、教育など)にわたる92のシナリオに基づいて1840のシミュレーションを実行します。
我々の実験は、最先端のLSMは、プロプライエタリかつオープンソースの両方で、50%以上のケースで安全リスクを示すことを示した。
論文 参考訳(メタデータ) (2024-09-24T19:47:21Z) - Safeguarding AI Agents: Developing and Analyzing Safety Architectures [0.0]
本稿では,人間チームと連携するAIシステムにおける安全対策の必要性について論じる。
我々は,AIエージェントシステムにおける安全プロトコルを強化する3つのフレームワークを提案し,評価する。
これらのフレームワークはAIエージェントシステムの安全性とセキュリティを大幅に強化することができると結論付けている。
論文 参考訳(メタデータ) (2024-09-03T10:14:51Z) - EAIRiskBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [47.69642609574771]
EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としてのファンデーションモデルは、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
EAIRiskBenchは、EAIシナリオにおける自動物理的リスクアセスメントのための新しいフレームワークである。
論文 参考訳(メタデータ) (2024-08-08T13:19:37Z) - Cross-Modality Safety Alignment [73.8765529028288]
我々は、モダリティ間の安全アライメントを評価するために、セーフインプットとアンセーフアウトプット(SIUO)と呼ばれる新しい安全アライメントの課題を導入する。
この問題を実証的に調査するため,我々はSIUOを作成した。SIUOは,自己修復,違法行為,プライバシー侵害など,9つの重要な安全領域を含むクロスモダリティベンチマークである。
以上の結果から, クローズドおよびオープンソース両方のLVLMの安全性上の重大な脆弱性が明らかとなり, 複雑で現実的なシナリオを確実に解釈し, 応答する上で, 現行モデルが不十分であることが示唆された。
論文 参考訳(メタデータ) (2024-06-21T16:14:15Z) - AI Risk Management Should Incorporate Both Safety and Security [185.68738503122114]
AIリスクマネジメントの利害関係者は、安全とセキュリティの間のニュアンス、シナジー、相互作用を意識すべきである、と私たちは主張する。
我々は、AIの安全性とAIのセキュリティの違いと相互作用を明らかにするために、統一された参照フレームワークを導入する。
論文 参考訳(メタデータ) (2024-05-29T21:00:47Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
我々は、AI安全性に対する一連のアプローチを紹介し、定義する。
これらのアプローチの中核的な特徴は、高保証の定量的安全性保証を備えたAIシステムを作ることである。
これら3つのコアコンポーネントをそれぞれ作成するためのアプローチを概説し、主な技術的課題を説明し、それらに対する潜在的なソリューションをいくつか提案します。
論文 参考訳(メタデータ) (2024-05-10T17:38:32Z) - Prioritizing Safeguarding Over Autonomy: Risks of LLM Agents for Science [65.77763092833348]
大規模言語モデル(LLM)を利用したインテリジェントエージェントは、自律的な実験を行い、様々な分野にわたる科学的発見を促進する上で、大きな可能性を証明している。
彼らの能力は有望だが、これらのエージェントは安全性を慎重に考慮する必要がある新たな脆弱性も導入している。
本稿では,科学領域におけるLSMをベースとしたエージェントの脆弱性の徹底的な調査を行い,その誤用に伴う潜在的なリスクに光を当て,安全性対策の必要性を強調した。
論文 参考訳(メタデータ) (2024-02-06T18:54:07Z) - A Framework for Exploring the Consequences of AI-Mediated Enterprise Knowledge Access and Identifying Risks to Workers [3.4568218861862556]
本稿では、AIを利用した企業知識アクセスシステムから労働者のリスクを特定するためのConsequence-Mechanism-Riskフレームワークを提案する。
我々は、労働者に対するリスクを詳述した幅広い文献を執筆し、労働者の価値、力、幸福に対するリスクを分類した。
今後の作業は、この枠組みを他の技術システムに適用し、労働者や他のグループの保護を促進する可能性がある。
論文 参考訳(メタデータ) (2023-12-08T17:05:40Z) - A Brief Overview of AI Governance for Responsible Machine Learning
Systems [3.222802562733787]
このポジションペーパーは、AIの責任ある使用を監督するように設計されたフレームワークである、AIガバナンスの簡単な紹介を提案する。
AIの確率的性質のため、それに関連するリスクは従来の技術よりもはるかに大きい。
論文 参考訳(メタデータ) (2022-11-21T23:48:51Z) - Towards Risk Modeling for Collaborative AI [5.941104748966331]
コラボレーティブaiシステムは、共通の目標を達成するために、共有空間で人間と協力することを目指している。
この設定は、人間を傷つける可能性のある接触により、潜在的に危険な状況を引き起こす。
協調型AIシステムに合わせたリスクモデリング手法を紹介します。
論文 参考訳(メタデータ) (2021-03-12T18:53:06Z) - Towards a Policy-as-a-Service Framework to Enable Compliant, Trustworthy
AI and HRI Systems in the Wild [7.225523345649149]
信頼できる自律システムの構築は、単に「常に正しいことをする」エージェントを雇おうとする以上の多くの理由から難しい。
AIとHRIには、信頼の問題は本質的に社会技術的である、というより広い文脈がある。
本稿では, 信頼性の「ファジィ」な社会技術的側面と, 設計・展開の両面での配慮の必要性を強調した。
論文 参考訳(メタデータ) (2020-10-06T18:32:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。