Analysis of loss correction with the Gottesman-Kitaev-Preskill code
- URL: http://arxiv.org/abs/2112.01425v1
- Date: Thu, 2 Dec 2021 17:15:21 GMT
- Title: Analysis of loss correction with the Gottesman-Kitaev-Preskill code
- Authors: Jacob Hastrup and Ulrik L. Andersen
- Abstract summary: The Gottesman-Kitaev-Preskill (GKP) code is a promising bosonic quantum error-correcting code.
We show that amplification is not required to perform GKP error correction.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Gottesman-Kitaev-Preskill (GKP) code is a promising bosonic quantum
error-correcting code, encoding logical qubits into a bosonic mode in such a
way that many physically relevant noise types can be corrected effectively. A
particularly relevant noise channel is the pure loss channel, which the GKP
code is known to protect against. In particular, it is commonly pointed out
that losses can be corrected by the GKP code by transforming the losses into
random Gaussian displacements through a quantum-limited amplification channel.
However, implementing such amplification in practice is not ideal and could
easily introduce an additional overhead of noise from associated experimental
imperfections. Here, we analyse the performance of teleportation-based GKP
error correction against loss in the absence of an amplification channel. We
show that amplification is not required to perform GKP error correction, and
that performing amplification actually worsens the performance for practically
relevant parameter regimes.
Related papers
- Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
We exploit the idea of erasure qubits, relying on an efficient conversion of the dominant noise into erasures at known locations.
We propose and optimize QEC schemes based on erasure qubits and the recently-introduced Floquet codes.
Our results demonstrate that, despite being slightly more complex, QEC schemes based on erasure qubits can significantly outperform standard approaches.
arXiv Detail & Related papers (2023-12-21T17:40:18Z) - Correcting biased noise using Gottesman-Kitaev-Preskill repetition code
with noisy ancilla [0.6802401545890963]
Gottesman-Kitaev-Preskill (GKP) code is proposed to correct small displacement error in phase space.
If noise in phase space is biased, square-lattice GKP code can be ancillaryd with XZZX surface code or repetition code.
We study the performance of GKP repetition codes with physical ancillary GKP qubits in correcting biased noise.
arXiv Detail & Related papers (2023-08-03T06:14:43Z) - The END: An Equivariant Neural Decoder for Quantum Error Correction [73.4384623973809]
We introduce a data efficient neural decoder that exploits the symmetries of the problem.
We propose a novel equivariant architecture that achieves state of the art accuracy compared to previous neural decoders.
arXiv Detail & Related papers (2023-04-14T19:46:39Z) - Robust suppression of noise propagation in GKP error-correction [0.0]
Recently reported generation and error-correction of GKP qubits holds great promise for the future of quantum computing.
We develop efficient numerical methods to optimize our protocol parameters.
Our approach circumvents the main roadblock towards fault-tolerant quantum computation with GKP qubits.
arXiv Detail & Related papers (2023-02-23T15:21:50Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Engineering fast bias-preserving gates on stabilized cat qubits [64.20602234702581]
bias-preserving gates can significantly reduce resource overhead for fault-tolerant quantum computing.
In this work, we apply a derivative-based leakage suppression technique to overcome non-adiabatic errors.
arXiv Detail & Related papers (2021-05-28T15:20:21Z) - Low overhead fault-tolerant quantum error correction with the
surface-GKP code [60.44022726730614]
We propose a highly effective use of the surface-GKP code, i.e., the surface code consisting of bosonic GKP qubits instead of bare two-dimensional qubits.
We show that a low logical failure rate $p_L 10-7$ can be achieved with moderate hardware requirements.
arXiv Detail & Related papers (2021-03-11T23:07:52Z) - Efficient Concatenated Bosonic Code for Additive Gaussian Noise [0.0]
Bosonic codes offer noise resilience for quantum information processing.
We propose using a Gottesman-Kitaev-Preskill code to detect discard error-prone qubits and a quantum parity code to handle residual errors.
Our work may have applications in a wide range of quantum computation and communication scenarios.
arXiv Detail & Related papers (2021-02-02T08:01:30Z) - Continuous-variable error correction for general Gaussian noises [5.372221197181905]
We develop a theory framework to enable the efficient calculation of the noise standard deviation after the error correction.
Our code provides the optimal scaling of the residue noise standard deviation with the number of modes.
arXiv Detail & Related papers (2021-01-06T23:28:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.