論文の概要: Fast Neural Representations for Direct Volume Rendering
- arxiv url: http://arxiv.org/abs/2112.01579v1
- Date: Thu, 2 Dec 2021 19:42:39 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-06 16:18:17.461572
- Title: Fast Neural Representations for Direct Volume Rendering
- Title(参考訳): 直接ボリュームレンダリングのための高速ニューラルネットワーク表現
- Authors: Sebastian Weiss, Philipp Herm\"uller, R\"udiger Westermann
- Abstract要約: 本稿では,GPUテンソルコアを用いたシーン表現ネットワークの設計を提案する。
時間変化場に対する空間超解法に代わる手法として,任意の粒度でランダムなアクセス再構成を実現するために,潜在シーン空間上に構築する手法を提案する。
- 参考スコア(独自算出の注目度): 1.2891210250935146
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the potential of neural scene representations to effectively compress
3D scalar fields at high reconstruction quality, the computational complexity
of the training and data reconstruction step using scene representation
networks limits their use in practical applications. In this paper, we analyze
whether scene representation networks can be modified to reduce these
limitations and whether these architectures can also be used for temporal
reconstruction tasks. We propose a novel design of scene representation
networks using GPU tensor cores to integrate the reconstruction seamlessly into
on-chip raytracing kernels. Furthermore, we investigate the use of image-guided
network training as an alternative to classical data-driven approaches, and we
explore the potential strengths and weaknesses of this alternative regarding
quality and speed. As an alternative to spatial super-resolution approaches for
time-varying fields, we propose a solution that builds upon latent-space
interpolation to enable random access reconstruction at arbitrary granularity.
We summarize our findings in the form of an assessment of the strengths and
limitations of scene representation networks for scientific visualization tasks
and outline promising future research directions in this field.
- Abstract(参考訳): 高再生品質で3次元スカラー場を効果的に圧縮するニューラルシーン表現の可能性にもかかわらず、シーン表現ネットワークを用いたトレーニングとデータ再構成ステップの計算複雑性は、実用的な用途での使用を制限する。
本稿では,これらの制約を緩和するためにシーン表現ネットワークを変更できるのか,時間的再構成にも使用できるのかを解析する。
本稿では,gpuテンソルコアを用いたシーン表現ネットワークの新たな設計法を提案する。
さらに,従来のデータ駆動アプローチの代替として画像誘導ネットワークトレーニングの利用について検討し,品質と速度に関して,この代替案の強みと弱みについて検討する。
時変場に対する空間的超解像手法の代替として,任意の粒度でのランダムアクセス再構成を可能にする潜在空間補間法を提案する。
本研究は,科学的可視化タスクにおけるシーン表現ネットワークの強みと限界の評価という形で要約し,将来的な研究の方向性を概説する。
関連論文リスト
- MaRINeR: Enhancing Novel Views by Matching Rendered Images with Nearby References [49.71130133080821]
MaRINeRは、近くのマッピング画像の情報を活用して、ターゲット視点のレンダリングを改善する方法である。
暗黙のシーン表現と暗黙のシーン表現の両方から、定量的な指標と定性的な例のレンダリングの改善を示す。
論文 参考訳(メタデータ) (2024-07-18T17:50:03Z) - Fast Monocular Scene Reconstruction with Global-Sparse Local-Dense Grids [84.90863397388776]
本稿では,スパルス・ボクセル・ブロック・グリッドにおける署名付き距離関数(SDF)を直接使用して,距離のない高速かつ正確なシーン再構成を実現することを提案する。
我々の世界規模で疎密で局所的なデータ構造は、表面の空間的空間性を利用して、キャッシュフレンドリーなクエリを可能にし、マルチモーダルデータへの直接拡張を可能にします。
実験により、我々のアプローチはトレーニングでは10倍、レンダリングでは100倍高速であり、最先端のニューラル暗黙法に匹敵する精度を実現していることがわかった。
論文 参考訳(メタデータ) (2023-05-22T16:50:19Z) - A Deep Learning Approach for SAR Tomographic Imaging of Forested Areas [10.477070348391079]
我々は,1つのフィードフォワードパスでトモグラフィインバージョンを実行するために,軽量ニューラルネットワークをトレーニング可能であることを示す。
我々は、シミュレーションデータを用いてエンコーダ・デコーダネットワークを訓練し、実LバンドとPバンドのデータに基づいてその手法を検証する。
論文 参考訳(メタデータ) (2023-01-20T14:34:03Z) - A Proper Orthogonal Decomposition approach for parameters reduction of
Single Shot Detector networks [0.0]
本稿では,古典的モデルオーダー削減手法であるProper Orthogonal Decompositionに基づく次元削減フレームワークを提案する。
我々は、PASCAL VOCデータセットを用いてSSD300アーキテクチャにそのようなフレームワークを適用し、ネットワーク次元の削減と、転送学習コンテキストにおけるネットワークの微調整における顕著な高速化を実証した。
論文 参考訳(メタデータ) (2022-07-27T14:43:14Z) - Neural 3D Reconstruction in the Wild [86.6264706256377]
そこで我々は,インターネット写真コレクションから効率よく高精度な表面再構成を実現する新しい手法を提案する。
そこで本研究では,これらのシーンにおける再構成性能を評価するための新しいベンチマークとプロトコルを提案する。
論文 参考訳(メタデータ) (2022-05-25T17:59:53Z) - Spatio-Temporal Recurrent Networks for Event-Based Optical Flow
Estimation [47.984368369734995]
本稿では,イベントベース光フロー推定のためのニューラルネットアーキテクチャを提案する。
このネットワークは、Multi-Vehicle Stereo Event Cameraデータセット上で、セルフ教師付き学習でエンドツーエンドにトレーニングされている。
既存の最先端の手法を大きなマージンで上回る結果が得られた。
論文 参考訳(メタデータ) (2021-09-10T13:37:37Z) - MVSNeRF: Fast Generalizable Radiance Field Reconstruction from
Multi-View Stereo [52.329580781898116]
MVSNeRFは、ビュー合成のための神経放射場を効率的に再構築できる新しいニューラルレンダリング手法である。
高密度にキャプチャされた画像に対して,シーン毎の最適化を考慮に入れたニューラルネットワークの先行研究とは異なり,高速ネットワーク推論により,近傍の3つの入力ビューのみからラミアンスフィールドを再構成できる汎用ディープニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-03-29T13:15:23Z) - Object-based Illumination Estimation with Rendering-aware Neural
Networks [56.01734918693844]
個々の物体とその局所画像領域のRGBD外観から高速環境光推定手法を提案する。
推定照明により、仮想オブジェクトは実際のシーンと一貫性のあるシェーディングでARシナリオでレンダリングできる。
論文 参考訳(メタデータ) (2020-08-06T08:23:19Z) - Deep Non-Line-of-Sight Reconstruction [18.38481917675749]
本稿では,再構成問題を効率的に解くために,畳み込みフィードフォワードネットワークを用いる。
本研究では,自動エンコーダアーキテクチャを設計し,一貫した画像を直接深度マップ表現にマッピングする。
筆者らのフィードフォワードネットワークは,合成データのみに基づいて訓練されているものの,SPADセンサの計測データに一般化し,モデルに基づく再構成手法と競合する結果が得られることを示した。
論文 参考訳(メタデータ) (2020-01-24T16:05:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。