論文の概要: VoxNeRF: Bridging Voxel Representation and Neural Radiance Fields for Enhanced Indoor View Synthesis
- arxiv url: http://arxiv.org/abs/2311.05289v2
- Date: Wed, 04 Dec 2024 18:32:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-05 18:18:24.172834
- Title: VoxNeRF: Bridging Voxel Representation and Neural Radiance Fields for Enhanced Indoor View Synthesis
- Title(参考訳): VoxNeRF:拡張室内ビュー合成のためのブラッジボクセル表現とニューラルラジアンス場
- Authors: Sen Wang, Qing Cheng, Stefano Gasperini, Wei Zhang, Shun-Cheng Wu, Niclas Zeller, Daniel Cremers, Nassir Navab,
- Abstract要約: VoxNeRFは、ニューラル室内再構成と新しいビュー合成の質と効率を高めるための新しいアプローチである。
本稿では,最も関連性の高い領域に計算資源を割り当てる効率的なボクセル誘導サンプリング手法を提案する。
私たちのアプローチは、ScanNetとScanNet++に関する広範な実験で検証されています。
- 参考スコア(独自算出の注目度): 73.50359502037232
- License:
- Abstract: The generation of high-fidelity view synthesis is essential for robotic navigation and interaction but remains challenging, particularly in indoor environments and real-time scenarios. Existing techniques often require significant computational resources for both training and rendering, and they frequently result in suboptimal 3D representations due to insufficient geometric structuring. To address these limitations, we introduce VoxNeRF, a novel approach that utilizes easy-to-obtain geometry priors to enhance both the quality and efficiency of neural indoor reconstruction and novel view synthesis. We propose an efficient voxel-guided sampling technique that allocates computational resources selectively to the most relevant segments of rays based on a voxel-encoded geometry prior, significantly reducing training and rendering time. Additionally, we incorporate a robust depth loss to improve reconstruction and rendering quality in sparse view settings. Our approach is validated with extensive experiments on ScanNet and ScanNet++ where VoxNeRF outperforms existing state-of-the-art methods and establishes a new benchmark for indoor immersive interpolation and extrapolation settings.
- Abstract(参考訳): 高忠実度ビュー合成の生成は、ロボットナビゲーションとインタラクションには不可欠であるが、特に屋内環境やリアルタイムシナリオでは、依然として困難である。
既存の技術はトレーニングとレンダリングの両方に重要な計算資源を必要とすることが多く、幾何学的構造が不十分なため、しばしば最適3D表現をもたらす。
これらの制約に対処するため,ニューラル室内再構成と新規ビュー合成の両面において,より容易で分かりやすい幾何学的手法を用いた新しいアプローチであるVoxNeRFを導入する。
本稿では,従来のボクセル符号化幾何に基づいて,計算資源を最も関連性の高い領域に選択的に割り当てる効率的なボクセル誘導サンプリング手法を提案する。
さらに、疎視環境における再現性やレンダリング品質を向上させるために、堅牢な奥行き損失が組み込まれている。
我々のアプローチは、ScanNetとScanNet++の広範な実験によって検証され、VoxNeRFは既存の最先端メソッドよりも優れ、屋内での没入型補間と外挿設定のための新しいベンチマークを確立する。
関連論文リスト
- PNeRFLoc: Visual Localization with Point-based Neural Radiance Fields [54.8553158441296]
統一された点ベース表現に基づく新しい視覚的ローカライゼーションフレームワーク PNeRFLoc を提案する。
一方、PNeRFLocは2次元特徴点と3次元特徴点をマッチングして初期ポーズ推定をサポートする。
一方、レンダリングベースの最適化を用いた新しいビュー合成によるポーズ改善も実現している。
論文 参考訳(メタデータ) (2023-12-17T08:30:00Z) - VQ-NeRF: Vector Quantization Enhances Implicit Neural Representations [25.88881764546414]
VQ-NeRFは、ベクトル量子化による暗黙の神経表現を強化するための効率的なパイプラインである。
圧縮および原スケールの両スケールでNeRFモデルを同時に最適化する,革新的なマルチスケールNeRFサンプリング方式を提案する。
我々は3次元再構成の幾何学的忠実度とセマンティックコヒーレンスを改善するためにセマンティックロス関数を組み込んだ。
論文 参考訳(メタデータ) (2023-10-23T01:41:38Z) - Learning Neural Duplex Radiance Fields for Real-Time View Synthesis [33.54507228895688]
本研究では,NeRFを高効率メッシュベースニューラル表現に蒸留・焼成する手法を提案する。
提案手法の有効性と優位性を,各種標準データセットの広範な実験を通じて実証する。
論文 参考訳(メタデータ) (2023-04-20T17:59:52Z) - SurfelNeRF: Neural Surfel Radiance Fields for Online Photorealistic
Reconstruction of Indoor Scenes [17.711755550841385]
SLAMに基づく手法は、3Dシーンの形状をリアルタイムで段階的に再構成することができるが、フォトリアリスティックな結果を描画することはできない。
NeRFベースの手法は、将来有望な新しいビュー合成結果を生成し、その長いオフライン最適化時間と幾何的制約の欠如は、オンライン入力を効率的に処理する上での課題となる。
本稿では、フレキシブルでスケーラブルなニューラルサーベイル表現を用いて、入力画像から幾何学的属性と外観特徴を抽出するSurfelNeRFを紹介する。
論文 参考訳(メタデータ) (2023-04-18T13:11:49Z) - Grid-guided Neural Radiance Fields for Large Urban Scenes [146.06368329445857]
近年のアプローチでは、シーンを地理的に分割し、複数のサブNeRFを採用して各領域を個別にモデル化する手法が提案されている。
もう一つの解決策は、計算効率が良く、大きなシーンに自然にスケールできる機能グリッド表現を使用することである。
本稿では,大規模都市における高忠実度レンダリングを実現し,計算効率を向上する枠組みを提案する。
論文 参考訳(メタデータ) (2023-03-24T13:56:45Z) - Geometry-Guided Progressive NeRF for Generalizable and Efficient Neural
Human Rendering [139.159534903657]
我々は、高忠実度自由視点人体詳細のための一般化可能で効率的なニューラルレーダランス・フィールド(NeRF)パイプラインを開発した。
自己閉塞性を改善するため,幾何誘導型多視点機能統合手法を考案した。
高いレンダリング効率を達成するため,幾何誘導型プログレッシブレンダリングパイプラインを導入する。
論文 参考訳(メタデータ) (2021-12-08T14:42:10Z) - NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor
Multi-view Stereo [97.07453889070574]
本稿では,従来のSfM再構成と学習に基づく先行手法を併用した多視点深度推定手法を提案する。
提案手法は室内シーンにおける最先端手法を著しく上回ることを示す。
論文 参考訳(メタデータ) (2021-09-02T17:54:31Z) - MVSNeRF: Fast Generalizable Radiance Field Reconstruction from
Multi-View Stereo [52.329580781898116]
MVSNeRFは、ビュー合成のための神経放射場を効率的に再構築できる新しいニューラルレンダリング手法である。
高密度にキャプチャされた画像に対して,シーン毎の最適化を考慮に入れたニューラルネットワークの先行研究とは異なり,高速ネットワーク推論により,近傍の3つの入力ビューのみからラミアンスフィールドを再構成できる汎用ディープニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-03-29T13:15:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。