論文の概要: VoxNeRF: Bridging Voxel Representation and Neural Radiance Fields for Enhanced Indoor View Synthesis
- arxiv url: http://arxiv.org/abs/2311.05289v2
- Date: Wed, 04 Dec 2024 18:32:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-05 18:18:24.172834
- Title: VoxNeRF: Bridging Voxel Representation and Neural Radiance Fields for Enhanced Indoor View Synthesis
- Title(参考訳): VoxNeRF:拡張室内ビュー合成のためのブラッジボクセル表現とニューラルラジアンス場
- Authors: Sen Wang, Qing Cheng, Stefano Gasperini, Wei Zhang, Shun-Cheng Wu, Niclas Zeller, Daniel Cremers, Nassir Navab,
- Abstract要約: VoxNeRFは、ニューラル室内再構成と新しいビュー合成の質と効率を高めるための新しいアプローチである。
本稿では,最も関連性の高い領域に計算資源を割り当てる効率的なボクセル誘導サンプリング手法を提案する。
私たちのアプローチは、ScanNetとScanNet++に関する広範な実験で検証されています。
- 参考スコア(独自算出の注目度): 73.50359502037232
- License:
- Abstract: The generation of high-fidelity view synthesis is essential for robotic navigation and interaction but remains challenging, particularly in indoor environments and real-time scenarios. Existing techniques often require significant computational resources for both training and rendering, and they frequently result in suboptimal 3D representations due to insufficient geometric structuring. To address these limitations, we introduce VoxNeRF, a novel approach that utilizes easy-to-obtain geometry priors to enhance both the quality and efficiency of neural indoor reconstruction and novel view synthesis. We propose an efficient voxel-guided sampling technique that allocates computational resources selectively to the most relevant segments of rays based on a voxel-encoded geometry prior, significantly reducing training and rendering time. Additionally, we incorporate a robust depth loss to improve reconstruction and rendering quality in sparse view settings. Our approach is validated with extensive experiments on ScanNet and ScanNet++ where VoxNeRF outperforms existing state-of-the-art methods and establishes a new benchmark for indoor immersive interpolation and extrapolation settings.
- Abstract(参考訳): 高忠実度ビュー合成の生成は、ロボットナビゲーションとインタラクションには不可欠であるが、特に屋内環境やリアルタイムシナリオでは、依然として困難である。
既存の技術はトレーニングとレンダリングの両方に重要な計算資源を必要とすることが多く、幾何学的構造が不十分なため、しばしば最適3D表現をもたらす。
これらの制約に対処するため,ニューラル室内再構成と新規ビュー合成の両面において,より容易で分かりやすい幾何学的手法を用いた新しいアプローチであるVoxNeRFを導入する。
本稿では,従来のボクセル符号化幾何に基づいて,計算資源を最も関連性の高い領域に選択的に割り当てる効率的なボクセル誘導サンプリング手法を提案する。
さらに、疎視環境における再現性やレンダリング品質を向上させるために、堅牢な奥行き損失が組み込まれている。
我々のアプローチは、ScanNetとScanNet++の広範な実験によって検証され、VoxNeRFは既存の最先端メソッドよりも優れ、屋内での没入型補間と外挿設定のための新しいベンチマークを確立する。
関連論文リスト
- UniVoxel: Fast Inverse Rendering by Unified Voxelization of Scene Representation [66.95976870627064]
We design a Unified Voxelization framework for explicit learning of scene representations, called UniVoxel。
そこで本研究では,シーンの形状,材料,照明を軽量ニューラルネットワークで容易に学習できるため,シーンを潜在容積表現に符号化することを提案する。
実験の結果、UniVoxelは他の方法と比較して最適化効率を著しく向上させ、シーンごとのトレーニング時間を数時間から18分に短縮し、良好な再現性を実現した。
論文 参考訳(メタデータ) (2024-07-28T17:24:14Z) - PNeRFLoc: Visual Localization with Point-based Neural Radiance Fields [54.8553158441296]
統一された点ベース表現に基づく新しい視覚的ローカライゼーションフレームワーク PNeRFLoc を提案する。
一方、PNeRFLocは2次元特徴点と3次元特徴点をマッチングして初期ポーズ推定をサポートする。
一方、レンダリングベースの最適化を用いた新しいビュー合成によるポーズ改善も実現している。
論文 参考訳(メタデータ) (2023-12-17T08:30:00Z) - Adaptive Multi-NeRF: Exploit Efficient Parallelism in Adaptive Multiple
Scale Neural Radiance Field Rendering [3.8200916793910973]
ニューラル・ラジアンス・フィールド(NeRF)の最近の進歩は、3次元シーンの出現を暗黙のニューラルネットワークとして表す重要な可能性を示している。
しかし、長いトレーニングとレンダリングのプロセスは、リアルタイムレンダリングアプリケーションにこの有望なテクニックを広く採用することを妨げる。
本稿では,大規模シーンのニューラルネットワークレンダリングプロセスの高速化を目的とした適応型マルチNeRF手法を提案する。
論文 参考訳(メタデータ) (2023-10-03T08:34:49Z) - Learning Neural Duplex Radiance Fields for Real-Time View Synthesis [33.54507228895688]
本研究では,NeRFを高効率メッシュベースニューラル表現に蒸留・焼成する手法を提案する。
提案手法の有効性と優位性を,各種標準データセットの広範な実験を通じて実証する。
論文 参考訳(メタデータ) (2023-04-20T17:59:52Z) - Grid-guided Neural Radiance Fields for Large Urban Scenes [146.06368329445857]
近年のアプローチでは、シーンを地理的に分割し、複数のサブNeRFを採用して各領域を個別にモデル化する手法が提案されている。
もう一つの解決策は、計算効率が良く、大きなシーンに自然にスケールできる機能グリッド表現を使用することである。
本稿では,大規模都市における高忠実度レンダリングを実現し,計算効率を向上する枠組みを提案する。
論文 参考訳(メタデータ) (2023-03-24T13:56:45Z) - Fast Dynamic Radiance Fields with Time-Aware Neural Voxels [106.69049089979433]
タイムアウェアなボクセル特徴を持つシーンを表現し,TiNeuVoxという名前のラジアンスフィールドフレームワークを提案する。
我々のフレームワークは、高いレンダリング品質を維持しながら、動的ラディアンスフィールドの最適化を加速する。
TiNeuVoxは8分と8MBのストレージでトレーニングを完了しています。
論文 参考訳(メタデータ) (2022-05-30T17:47:31Z) - Direct Voxel Grid Optimization: Super-fast Convergence for Radiance
Fields Reconstruction [42.3230709881297]
画像の集合からシーンごとの放射界を再構成する超高速収束手法を提案する。
提案手法はNeRFに比較可能な品質を実現し,1つのGPUで15分以内でスクラッチから急速に収束する。
論文 参考訳(メタデータ) (2021-11-22T14:02:07Z) - MVSNeRF: Fast Generalizable Radiance Field Reconstruction from
Multi-View Stereo [52.329580781898116]
MVSNeRFは、ビュー合成のための神経放射場を効率的に再構築できる新しいニューラルレンダリング手法である。
高密度にキャプチャされた画像に対して,シーン毎の最適化を考慮に入れたニューラルネットワークの先行研究とは異なり,高速ネットワーク推論により,近傍の3つの入力ビューのみからラミアンスフィールドを再構成できる汎用ディープニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-03-29T13:15:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。