論文の概要: Malakai: Music That Adapts to the Shape of Emotions
- arxiv url: http://arxiv.org/abs/2112.02070v1
- Date: Fri, 3 Dec 2021 18:34:54 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-06 16:23:14.804130
- Title: Malakai: Music That Adapts to the Shape of Emotions
- Title(参考訳): マラカイ:感情の形に適応した音楽
- Authors: Zack Harris, Liam Atticus Clarke, Pietro Gagliano, Dante Camarena,
Manal Siddiqui, Pablo S. Castro
- Abstract要約: Malakaiは、ユーザがこのようなダイナミックな曲を作り、聴き、リミックスし、共有するのを助けるツールだ。
Malakaiを使えば、リスナーが対話できるダイナミックな曲を作成できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The advent of ML music models such as Google Magenta's MusicVAE now allow us
to extract and replicate compositional features from otherwise complex
datasets. These models allow computational composers to parameterize abstract
variables such as style and mood. By leveraging these models and combining them
with procedural algorithms from the last few decades, it is possible to create
a dynamic song that composes music in real-time to accompany interactive
experiences. Malakai is a tool that helps users of varying skill levels create,
listen to, remix and share such dynamic songs. Using Malakai, a Composer can
create a dynamic song that can be interacted with by a Listener
- Abstract(参考訳): Google MagentaのMusicVAEのようなMLミュージックモデルの出現により、他の複雑なデータセットから合成機能の抽出と複製が可能になりました。
これらのモデルにより、計算作曲家はスタイルやムードなどの抽象変数をパラメータ化できる。
これらのモデルを利用して過去数十年の手続きアルゴリズムと組み合わせることで、インタラクティブな体験に合わせて音楽をリアルタイムで作曲するダイナミックな曲を作ることができる。
Malakaiは、さまざまなスキルレベルを持つユーザが、このようなダイナミックな曲を作り、聴き、リミックスし、共有するのを助けるツールだ。
malakaiを使って、作曲家はリスナーが対話できるダイナミックな曲を作ることができる
関連論文リスト
- MuVi: Video-to-Music Generation with Semantic Alignment and Rhythmic Synchronization [52.498942604622165]
本稿では,ビデオコンテンツに合わせた音楽を生成するためのフレームワークであるMuViについて述べる。
MuViは、特別に設計された視覚適応器を通じて映像コンテンツを分析し、文脈的および時間的に関係のある特徴を抽出する。
音声品質と時間同期の両方において, MuVi が優れた性能を示すことを示す。
論文 参考訳(メタデータ) (2024-10-16T18:44:56Z) - LARP: Language Audio Relational Pre-training for Cold-Start Playlist Continuation [49.89372182441713]
マルチモーダルコールドスタートプレイリスト継続モデルであるLARPを導入する。
我々のフレームワークはタスク固有の抽象化の段階を増大させており、イントラトラック(音声)コントラスト損失、トラックトラックコントラスト損失、トラックプレイリストコントラスト損失である。
論文 参考訳(メタデータ) (2024-06-20T14:02:15Z) - Emotion Manipulation Through Music -- A Deep Learning Interactive Visual Approach [0.0]
我々は,AIツールを用いて歌の感情的内容を操作する新しい方法を提案する。
私たちのゴールは、元のメロディをできるだけそのままにして、望ましい感情を達成することです。
この研究は、オンデマンドのカスタム音楽生成、既存の作品の自動リミックス、感情の進行に合わせて調整された音楽プレイリストに寄与する可能性がある。
論文 参考訳(メタデータ) (2024-06-12T20:12:29Z) - ComposerX: Multi-Agent Symbolic Music Composition with LLMs [51.68908082829048]
音楽の構成は、長い依存と調和の制約で情報を理解し、生成する能力を必要とする複雑なタスクである。
現在のLLMは、このタスクで簡単に失敗し、In-Context-LearningやChain-of-Thoughtsといったモダンな技術が組み込まれても、不適切な曲を生成する。
エージェントベースのシンボリック音楽生成フレームワークであるComposerXを提案する。
論文 参考訳(メタデータ) (2024-04-28T06:17:42Z) - MuPT: A Generative Symbolic Music Pretrained Transformer [56.09299510129221]
音楽の事前学習におけるLarge Language Models (LLM) の適用について検討する。
生成過程の異なるトラックからの不整合対策に関連する課題に対処するために,SMT-ABC Notation(Synchronized Multi-Track ABC Notation)を提案する。
私たちのコントリビューションには、最大8192個のトークンを処理可能な一連のモデルが含まれており、トレーニングセットの象徴的な音楽データの90%をカバーしています。
論文 参考訳(メタデータ) (2024-04-09T15:35:52Z) - ByteComposer: a Human-like Melody Composition Method based on Language
Model Agent [11.792129708566598]
大規模言語モデル(LLM)は、マルチモーダル理解と生成タスクの進歩を奨励している。
我々は,人間の創造的パイプラインを4つのステップでエミュレートするエージェントフレームワークByteComposerを提案する。
我々は、GPT4およびオープンソースの大規模言語モデルに関する広範な実験を行い、フレームワークの有効性を実証した。
論文 参考訳(メタデータ) (2024-02-24T04:35:07Z) - Arrange, Inpaint, and Refine: Steerable Long-term Music Audio Generation and Editing via Content-based Controls [6.176747724853209]
LLM(Large Language Models)は、高品質な音楽を生成する上で有望であるが、自動回帰生成に焦点をあてることで、音楽編集タスクにおける有用性を制限している。
本稿では,パラメータ効率の高いヘテロジニアスアダプタとマスキングトレーニングスキームを組み合わせた新しいアプローチを提案する。
提案手法は, フレームレベルのコンテンツベース制御を統合し, トラックコンディショニングとスコアコンディショニングによる音楽アレンジメントを容易にする。
論文 参考訳(メタデータ) (2024-02-14T19:00:01Z) - Video2Music: Suitable Music Generation from Videos using an Affective
Multimodal Transformer model [32.801213106782335]
我々は、提供されたビデオにマッチできる生成型音楽AIフレームワーク、Video2Musicを開発した。
そこで本研究では,映像コンテンツにマッチする楽曲を感情的に生成する手法を提案する。
論文 参考訳(メタデータ) (2023-11-02T03:33:00Z) - ComMU: Dataset for Combinatorial Music Generation [20.762884001498627]
Combinatorの音楽生成は、音楽の短いサンプルと豊かな音楽メタデータを生成し、それらを組み合わせて完全な音楽を生成する。
ComMUは、短い音楽サンプルとそれに対応する12の音楽メタデータからなる最初のシンボリック音楽データセットである。
以上の結果から,トラックロールやコード品質などのユニークなメタデータが自動合成の能力を向上させることが示唆された。
論文 参考訳(メタデータ) (2022-11-17T07:25:09Z) - PopMAG: Pop Music Accompaniment Generation [190.09996798215738]
単一シーケンスでの同時マルチトラック生成が可能なMUlti-track MIDI表現(MuMIDI)を提案する。
MuMIDIはシーケンス長を拡大し、長期音楽モデリングの新しい課題をもたらす。
我々は,ポップミュージックの伴奏生成をPopMAGと呼ぶ。
論文 参考訳(メタデータ) (2020-08-18T02:28:36Z) - RL-Duet: Online Music Accompaniment Generation Using Deep Reinforcement
Learning [69.20460466735852]
本稿では,オンライン伴奏生成のための深層強化学習アルゴリズムを提案する。
提案アルゴリズムは人体に応答し,メロディック,ハーモニック,多種多様な機械部品を生成する。
論文 参考訳(メタデータ) (2020-02-08T03:53:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。