論文の概要: Characterizing Retweet Bots: The Case of Black Market Accounts
- arxiv url: http://arxiv.org/abs/2112.02366v3
- Date: Wed, 23 Mar 2022 09:53:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-05 18:15:33.314460
- Title: Characterizing Retweet Bots: The Case of Black Market Accounts
- Title(参考訳): retweetボットの特徴: ブラックマーケットアカウントの場合
- Authors: Tu\u{g}rulcan Elmas, Rebekah Overdorf, Karl Aberer
- Abstract要約: 我々は、ブラックマーケットからリツイートを購入することで発見されたリツイートボットを特徴付けている。
偽アカウントなのか偽アカウントなのか、それとも偽アカウントなのかを検知する。
また,人的管理アカウントとの違いも分析した。
- 参考スコア(独自算出の注目度): 3.0254442724635173
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Malicious Twitter bots are detrimental to public discourse on social media.
Past studies have looked at spammers, fake followers, and astroturfing bots,
but retweet bots, which artificially inflate content, are not well understood.
In this study, we characterize retweet bots that have been uncovered by
purchasing retweets from the black market. We detect whether they are fake or
genuine accounts involved in inauthentic activities and what they do in order
to appear legitimate. We also analyze their differences from human-controlled
accounts. From our findings on the nature and life-cycle of retweet bots, we
also point out several inconsistencies between the retweet bots used in this
work and bots studied in prior works. Our findings challenge some of the
fundamental assumptions related to bots and in particular how to detect them.
- Abstract(参考訳): 悪質なtwitterボットは、ソーシャルメディア上の公開談話に有害である。
過去の研究でスパマー、フェイクフォロワー、アストロフリングボットが研究されているが、人工的にコンテンツが膨らむリツイートボットはよく分かっていない。
本研究では、ブラックマーケットからリツイートを購入して発見されたリツイートボットを特徴付ける。
不正行為に関わる偽アカウントか真偽アカウントか、正当性を示すために何をするかを検出する。
また,人間管理アカウントとの差異も分析した。
リツイートボットの性質とライフサイクルから,本研究で使用されているリツイートボットと,それ以前の研究で研究されたボットとの間には,いくつかの矛盾点が指摘されている。
我々の発見は、ボットに関するいくつかの基本的な仮定、特にその検出方法に挑戦する。
関連論文リスト
- My Brother Helps Me: Node Injection Based Adversarial Attack on Social Bot Detection [69.99192868521564]
Twitterのようなソーシャルプラットフォームは、数多くの不正なユーザーから包囲されている。
ソーシャルネットワークの構造のため、ほとんどの手法は攻撃を受けやすいグラフニューラルネットワーク(GNN)に基づいている。
本稿では,ボット検出モデルを欺いたノードインジェクションに基づく逆攻撃手法を提案する。
論文 参考訳(メタデータ) (2023-10-11T03:09:48Z) - BotArtist: Generic approach for bot detection in Twitter via semi-automatic machine learning pipeline [47.61306219245444]
Twitterは、ボットや偽アカウントのターゲットとなり、偽情報や操作の拡散につながった。
本稿では,機械学習モデル開発に関連する課題に対処するために,セミオートマチック機械学習パイプライン(SAMLP)を提案する。
ユーザプロファイル機能に基づいたボット検出モデルBotArtistを開発した。
論文 参考訳(メタデータ) (2023-05-31T09:12:35Z) - You are a Bot! -- Studying the Development of Bot Accusations on Twitter [1.7626250599622473]
地上の真実データがないと、研究者たちは群衆の知恵を取り入れたいかもしれない。
本研究は,Twitter上でのボットの告発に関する大規模な研究である。
この言葉は、ソーシャルメディアの会話において、ボットという用語が非人間化の道具になったことを示している。
論文 参考訳(メタデータ) (2023-02-01T16:09:11Z) - Should we agree to disagree about Twitter's bot problem? [1.6317061277457]
ボットに類似した行動、検出方法、検査された人口に対する仮定が、Twitter上でのボットの割合の推定にどのように影響するかを論じる。
当社は、プラットフォームがユーザに影響を与える可能性のある脅威に対処する上で、警戒し、透明性を保ち、バイアスを負わないことの責任を強調しています。
論文 参考訳(メタデータ) (2022-09-20T21:27:25Z) - Investigating the Validity of Botometer-based Social Bot Studies [0.0]
ソーシャルボットは、世論を操作することを目的として悪意あるアクターが運営するソーシャルメディアアカウントの自動化だと考えられている。
社会ボットの活動は、アメリカ合衆国大統領選挙を含む様々な政治的文脈で報告されている。
ソーシャルボットの普及率を推定するために広く利用されている研究設計の根本的な欠点を指摘する。
論文 参考訳(メタデータ) (2022-07-23T09:31:30Z) - Manipulating Twitter Through Deletions [64.33261764633504]
Twitter上でのインフルエンスキャンペーンの研究は、公開APIを通じて得られたツイートから悪意のあるアクティビティを識別することに大きく依存している。
ここでは,1100万以上のアカウントによる10億以上の削除を含む,異常な削除パターンを網羅的かつ大規模に分析する。
少数のアカウントが毎日大量のツイートを削除していることがわかった。
まず、ツイートのボリューム制限が回避され、特定のアカウントが毎日2600万以上のツイートをネットワークに流すことができる。
第二に、調整されたアカウントのネットワークは、繰り返しのいいね!や、最終的に削除されるコンテンツとは違って、ランキングアルゴリズムを操作できる。
論文 参考訳(メタデータ) (2022-03-25T20:07:08Z) - Identification of Twitter Bots based on an Explainable ML Framework: the
US 2020 Elections Case Study [72.61531092316092]
本稿では,ラベル付きTwitterデータに基づくTwitterボット識別システムの設計に焦点をあてる。
Supervised Machine Learning (ML)フレームワークは、Extreme Gradient Boosting (XGBoost)アルゴリズムを用いて採用されている。
また、MLモデルの予測を説明するためにShapley Additive Explanations (SHAP)をデプロイした。
論文 参考訳(メタデータ) (2021-12-08T14:12:24Z) - CheerBots: Chatbots toward Empathy and Emotionusing Reinforcement
Learning [60.348822346249854]
本研究では,複数の共感型チャットボットがユーザの暗黙の感情を理解し,複数の対話のターンに対して共感的に応答する枠組みを提案する。
チャットボットをCheerBotsと呼びます。CheerBotsは検索ベースまたは生成ベースで、深い強化学習によって微調整されます。
共感的態度で反応するため,CheerBotsの学習支援としてシミュレーションエージェントである概念人間モデルを開発し,今後のユーザの感情状態の変化を考慮し,共感を喚起する。
論文 参考訳(メタデータ) (2021-10-08T07:44:47Z) - BotSpot: Deep Learning Classification of Bot Accounts within Twitter [2.099922236065961]
Twitterのオープン化機能により、プログラムはTwitter APIを通じてTwitterアカウントを自動生成および制御できる。
ボットとして知られるこれらのアカウントは、ツイート、リツイート、フォロー、フォロー解除、他のアカウントへのダイレクトメッセージなどのアクションを自動的に実行する。
我々は,多層パーセプトロンニューラルネットワークとボットアカウントの9つの特徴を備えた,ディープラーニングを用いた新しいボット検出手法を提案する。
論文 参考訳(メタデータ) (2021-09-08T15:17:10Z) - Detection of Novel Social Bots by Ensembles of Specialized Classifiers [60.63582690037839]
悪意ある俳優は、社会ボットとして知られるアルゴリズムによって部分的に制御される不正なソーシャルメディアアカウントを作成し、誤情報を広め、オンラインでの議論を扇動する。
異なるタイプのボットが、異なる行動特徴によって特徴づけられることを示す。
本稿では,ボットのクラスごとに専門的な分類器を訓練し,それらの決定を最大ルールで組み合わせる,教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2020-06-11T22:59:59Z) - Twitter Bot Detection Using Bidirectional Long Short-term Memory Neural
Networks and Word Embeddings [6.09170287691728]
本稿では,Twitterボットを人間アカウントと区別するために,単語埋め込みを用いたリカレントニューラルネットワークを開発した。
実験により,既存の最先端ボット検出システムと比較して,本手法が競争力を発揮することが示された。
論文 参考訳(メタデータ) (2020-02-03T17:07:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。