Intention Recognition for Multiple Agents
- URL: http://arxiv.org/abs/2112.02513v1
- Date: Sun, 5 Dec 2021 08:50:39 GMT
- Title: Intention Recognition for Multiple Agents
- Authors: Zhang Zhang, Yifeng Zeng, Yingke Chen
- Abstract summary: We resort to a prescriptive approach to model agents' behaviour.
We introduce landmarks into the behavioural model.
We refine the model by focusing only action sequences in their plan.
- Score: 11.728085459365651
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intention recognition is an important step to facilitate collaboration in
multi-agent systems. Existing work mainly focuses on intention recognition in a
single-agent setting and uses a descriptive model, e.g. Bayesian networks, in
the recognition process. In this paper, we resort to a prescriptive approach to
model agents' behaviour where which their intentions are hidden in implementing
their plans. We introduce landmarks into the behavioural model therefore
enhancing informative features for identifying common intentions for multiple
agents. We further refine the model by focusing only action sequences in their
plan and provide a light model for identifying and comparing their intentions.
The new models provide a simple approach of grouping agents' common intentions
upon partial plans observed in agents' interactions. We provide experimental
results in support.
Related papers
- Efficient Adaptation in Mixed-Motive Environments via Hierarchical Opponent Modeling and Planning [51.52387511006586]
We propose Hierarchical Opponent modeling and Planning (HOP), a novel multi-agent decision-making algorithm.
HOP is hierarchically composed of two modules: an opponent modeling module that infers others' goals and learns corresponding goal-conditioned policies.
HOP exhibits superior few-shot adaptation capabilities when interacting with various unseen agents, and excels in self-play scenarios.
arXiv Detail & Related papers (2024-06-12T08:48:06Z) - Tell Me More! Towards Implicit User Intention Understanding of Language
Model Driven Agents [110.25679611755962]
Current language model-driven agents often lack mechanisms for effective user participation, which is crucial given the vagueness commonly found in user instructions.
We introduce Intention-in-Interaction (IN3), a novel benchmark designed to inspect users' implicit intentions through explicit queries.
We empirically train Mistral-Interact, a powerful model that proactively assesses task vagueness, inquires user intentions, and refines them into actionable goals.
arXiv Detail & Related papers (2024-02-14T14:36:30Z) - Contrastive learning-based agent modeling for deep reinforcement
learning [31.293496061727932]
Agent modeling is essential when designing adaptive policies for intelligent machine agents in multiagent systems.
We devised a Contrastive Learning-based Agent Modeling (CLAM) method that relies only on the local observations from the ego agent during training and execution.
CLAM is capable of generating consistent high-quality policy representations in real-time right from the beginning of each episode.
arXiv Detail & Related papers (2023-12-30T03:44:12Z) - A Model-Agnostic Framework for Recommendation via Interest-aware Item
Embeddings [4.989653738257287]
Interest-aware Capsule network (IaCN) is a model-agnostic framework that directly learns interest-oriented item representations.
IaCN serves as an auxiliary task, enabling the joint learning of both item-based and interest-based representations.
We evaluate the proposed approach on benchmark datasets, exploring various scenarios involving different deep neural networks.
arXiv Detail & Related papers (2023-08-17T22:40:59Z) - Rethinking Trajectory Prediction via "Team Game" [118.59480535826094]
We present a novel formulation for multi-agent trajectory prediction, which explicitly introduces the concept of interactive group consensus.
On two multi-agent settings, i.e. team sports and pedestrians, the proposed framework consistently achieves superior performance compared to existing methods.
arXiv Detail & Related papers (2022-10-17T07:16:44Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
Multi-agent imitation learning aims to train multiple agents to perform tasks from demonstrations by learning a mapping between observations and actions.
In this paper, we propose to use copula, a powerful statistical tool for capturing dependence among random variables, to explicitly model the correlation and coordination in multi-agent systems.
Our proposed model is able to separately learn marginals that capture the local behavioral patterns of each individual agent, as well as a copula function that solely and fully captures the dependence structure among agents.
arXiv Detail & Related papers (2021-07-10T03:49:41Z) - A Consciousness-Inspired Planning Agent for Model-Based Reinforcement
Learning [104.3643447579578]
We present an end-to-end, model-based deep reinforcement learning agent which dynamically attends to relevant parts of its state.
The design allows agents to learn to plan effectively, by attending to the relevant objects, leading to better out-of-distribution generalization.
arXiv Detail & Related papers (2021-06-03T19:35:19Z) - Deep Interactive Bayesian Reinforcement Learning via Meta-Learning [63.96201773395921]
The optimal adaptive behaviour under uncertainty over the other agents' strategies can be computed using the Interactive Bayesian Reinforcement Learning framework.
We propose to meta-learn approximate belief inference and Bayes-optimal behaviour for a given prior.
We show empirically that our approach outperforms existing methods that use a model-free approach, sample from the approximate posterior, maintain memory-free models of others, or do not fully utilise the known structure of the environment.
arXiv Detail & Related papers (2021-01-11T13:25:13Z) - Agent Modelling under Partial Observability for Deep Reinforcement
Learning [12.903487594031276]
Existing methods for agent modelling assume knowledge of the local observations and chosen actions of the modelled agents during execution.
We learn to extract representations about the modelled agents conditioned only on the local observations of the controlled agent.
The representations are used to augment the controlled agent's decision policy which is trained via deep reinforcement learning.
arXiv Detail & Related papers (2020-06-16T18:43:42Z) - Variational Autoencoders for Opponent Modeling in Multi-Agent Systems [9.405879323049659]
Multi-agent systems exhibit complex behaviors that emanate from the interactions of multiple agents in a shared environment.
In this work, we are interested in controlling one agent in a multi-agent system and successfully learn to interact with the other agents that have fixed policies.
Modeling the behavior of other agents (opponents) is essential in understanding the interactions of the agents in the system.
arXiv Detail & Related papers (2020-01-29T13:38:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.