論文の概要: Snapshot HDR Video Construction Using Coded Mask
- arxiv url: http://arxiv.org/abs/2112.02522v1
- Date: Sun, 5 Dec 2021 09:32:11 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-09 09:23:36.674905
- Title: Snapshot HDR Video Construction Using Coded Mask
- Title(参考訳): 符号化マスクを用いたHDR映像のスナップショット化
- Authors: Masheal Alghamdi, Qiang Fu, Ali Thabet, Wolfgang Heidrich
- Abstract要約: 本研究は,3D-CNNを用いて,符号化LDRビデオによる共同デモサイクリング,デノナイジング,HDRビデオ再構成を行う。
得られた結果は有望であり、従来のカメラで手頃なHDRビデオ撮影に繋がる可能性がある。
- 参考スコア(独自算出の注目度): 25.12198906401246
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper study the reconstruction of High Dynamic Range (HDR) video from
snapshot-coded LDR video. Constructing an HDR video requires restoring the HDR
values for each frame and maintaining the consistency between successive
frames. HDR image acquisition from single image capture, also known as snapshot
HDR imaging, can be achieved in several ways. For example, the reconfigurable
snapshot HDR camera is realized by introducing an optical element into the
optical stack of the camera; by placing a coded mask at a small standoff
distance in front of the sensor. High-quality HDR image can be recovered from
the captured coded image using deep learning methods. This study utilizes
3D-CNNs to perform a joint demosaicking, denoising, and HDR video
reconstruction from coded LDR video. We enforce more temporally consistent HDR
video reconstruction by introducing a temporal loss function that considers the
short-term and long-term consistency. The obtained results are promising and
could lead to affordable HDR video capture using conventional cameras.
- Abstract(参考訳): 本稿では、スナップショット符号化LDRビデオからハイダイナミックレンジ(HDR)ビデオの再構成について検討する。
HDRビデオを構築するには、各フレームのHDR値を復元し、連続するフレーム間の一貫性を維持する必要がある。
HDR画像取得(スナップショットHDR画像とも呼ばれる)は、いくつかの方法で達成できる。
例えば、再構成可能なスナップショットHDRカメラは、光学素子をカメラの光学スタックに導入し、コード化されたマスクをセンサの前方の小さなスタンドオフ距離に配置することで実現される。
取得した符号化画像から、ディープラーニングを用いて高品質なHDR画像を取得することができる。
本研究は,3D-CNNを用いて,符号化LDRビデオによる共同デモサイクリング,デノナイジング,HDRビデオ再構成を行う。
短期的・長期的整合性を考慮した時間的損失関数を導入することで,より時間的に一貫したHDRビデオ再構成を実現する。
得られた結果は有望であり、従来のカメラで手頃なHDRビデオ撮影に繋がる可能性がある。
関連論文リスト
- Exposure Completing for Temporally Consistent Neural High Dynamic Range Video Rendering [17.430726543786943]
本稿では,不在な露光情報を完成させることで,HDRフレームを描画する新しいパラダイムを提案する。
提案手法では, 隣接LDRフレームを時間次元で補間し, 露出の欠如に対してLDRフレームを再構成する。
これにより、HDR結果の融合プロセスの恩恵を受け、ノイズやゴーストを低減し、時間的一貫性を向上させることができる。
論文 参考訳(メタデータ) (2024-07-18T09:13:08Z) - Diffusion-Promoted HDR Video Reconstruction [45.73396977607666]
高ダイナミックレンジ(LDR)ビデオ再構成は、低ダイナミックレンジ(LDR)フレームから交互に露出したHDRビデオを生成することを目的としている。
既存の作品の多くは回帰に基づくパラダイムにのみ依存しており、ゴーストのアーティファクトや飽和した地域での詳細の欠如といった悪影響につながっている。
本稿では,HDR-V-Diffと呼ばれるHDR映像再構成のための拡散促進手法を提案する。
論文 参考訳(メタデータ) (2024-06-12T13:38:10Z) - HDR-GS: Efficient High Dynamic Range Novel View Synthesis at 1000x Speed via Gaussian Splatting [76.5908492298286]
既存のHDR NVS法は主にNeRFに基づいている。
訓練時間は長く、推論速度は遅い。
我々は新しいフレームワークHigh Dynamic Range Gaussian Splatting (-GS)を提案する。
論文 参考訳(メタデータ) (2024-05-24T00:46:58Z) - Event-based Asynchronous HDR Imaging by Temporal Incident Light Modulation [54.64335350932855]
我々は,HDRイメージングの課題に関する重要な知見に基づいて,Pixel-Asynchronous HDRイメージングシステムを提案する。
提案システムでは,DVS(Dynamic Vision Sensors)とLCDパネルを統合する。
LCDパネルは、その透過性を変化させてDVSの照射インシデントを変調し、ピクセル非依存のイベントストリームをトリガーする。
論文 参考訳(メタデータ) (2024-03-14T13:45:09Z) - Self-Supervised High Dynamic Range Imaging with Multi-Exposure Images in
Dynamic Scenes [58.66427721308464]
Selfは、訓練中にダイナミックなマルチ露光画像のみを必要とする自己教師型再構成手法である。
Selfは最先端の自己管理手法に対して優れた結果を出し、教師付き手法に匹敵するパフォーマンスを実現している。
論文 参考訳(メタデータ) (2023-10-03T07:10:49Z) - LAN-HDR: Luminance-based Alignment Network for High Dynamic Range Video
Reconstruction [20.911738532410766]
本稿では,LDRフレームを特徴空間に整列させ,その特徴をHDRフレームにマージする,エンドツーエンドのHDRビデオ合成フレームワークを提案する。
トレーニングでは、フレーム再構築損失に加えて時間的損失を採用し、時間的一貫性を高め、フリッカリングを低減する。
論文 参考訳(メタデータ) (2023-08-22T01:43:00Z) - HDR Video Reconstruction with a Large Dynamic Dataset in Raw and sRGB
Domains [23.309488653045026]
高ダイナミックレンジ(HDR)ビデオ再構成は、低ダイナミックレンジ(LDR)ビデオと比較して視覚的品質が優れているため、ますます注目を集めている。
同時にLDRフレームを取得するのが難しいため、動的シーンのための実際のLDR-ペアはいまだに存在しない。
本研究では,2つの異なる露光画像を同時にキャプチャするスタッガーセンサを用いて,生領域とsRGB領域のHDRフレームに融合する手法を提案する。
論文 参考訳(メタデータ) (2023-04-10T11:59:03Z) - GlowGAN: Unsupervised Learning of HDR Images from LDR Images in the Wild [74.52723408793648]
そこで本研究では,HDR画像の生成モデルを構築するための第1の手法について述べる。
鍵となる考え方は、GAN(Generative Adversarial Network)を訓練して、様々な露光下でLDRに投影された場合、実際のLDR画像と区別できないHDR画像を生成することである。
実験の結果,GlowGANはランドスケープ,雷,窓など多くの難題において,光現実的HDR画像を合成できることがわかった。
論文 参考訳(メタデータ) (2022-11-22T15:42:08Z) - HDRVideo-GAN: Deep Generative HDR Video Reconstruction [19.837271879354184]
本稿では,LDR シーケンスからのHDR ビデオ再構成を交互に行うための,エンドツーエンドの GAN ベースのフレームワークを提案する。
まず、ノイズの多いLDRビデオからクリーンなLDRフレームを抽出し、自己教師付き環境で訓練された聴覚ネットワークと交互に露光する。
次に、隣接する交互露光フレームを基準フレームに整列し、完全対向設定で高品質なHDRフレームを再構成する。
論文 参考訳(メタデータ) (2021-10-22T14:02:03Z) - HDR-GAN: HDR Image Reconstruction from Multi-Exposed LDR Images with
Large Motions [62.44802076971331]
マルチ露光LDR画像からHDR画像を合成するための新しいGANモデルHDR-GANを提案する。
本手法は,敵対学習を取り入れることで,欠落したコンテンツのある領域に忠実な情報を生成することができる。
論文 参考訳(メタデータ) (2020-07-03T11:42:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。