論文の概要: Learning over All Stabilizing Nonlinear Controllers for a
Partially-Observed Linear System
- arxiv url: http://arxiv.org/abs/2112.04219v1
- Date: Wed, 8 Dec 2021 10:43:47 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-09 21:36:47.126058
- Title: Learning over All Stabilizing Nonlinear Controllers for a
Partially-Observed Linear System
- Title(参考訳): 部分観測線形系に対する全安定化非線形制御系の学習
- Authors: Ruigang Wang and Nicholas Barbara and Max Revay and Ian R. Manchester
- Abstract要約: 線形力学系に対する非線形出力フィードバックコントローラのパラメータ化を提案する。
提案手法は, 制約を満たすことなく, 部分的に観測可能な線形力学系の閉ループ安定性を保証する。
- 参考スコア(独自算出の注目度): 4.3012765978447565
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a parameterization of nonlinear output feedback controllers for
linear dynamical systems based on a recently developed class of neural network
called the recurrent equilibrium network (REN), and a nonlinear version of the
Youla parameterization. Our approach guarantees the closed-loop stability of
partially observable linear dynamical systems without requiring any constraints
to be satisfied. This significantly simplifies model fitting as any
unconstrained optimization procedure can be applied whilst still maintaining
stability. We demonstrate our method on reinforcement learning tasks with both
exact and approximate gradient methods. Simulation studies show that our method
is significantly more scalable and significantly outperforms other approaches
in the same problem setting.
- Abstract(参考訳): 本稿では、リカレント平衡ネットワーク(REN)と呼ばれる最近のニューラルネットワークのクラスに基づく線形力学系に対する非線形出力フィードバックコントローラのパラメータ化と、Youlaパラメータ化の非線形バージョンを提案する。
本手法は,制約を満たさずに部分的に観測可能な線形力学系の閉ループ安定性を保証する。
これにより、制約のない最適化手順が安定性を維持しながら適用できるため、モデルフィッティングが大幅に単純化される。
本稿では,精密および近似勾配法を用いて強化学習タスクを行う方法を示す。
シミュレーション研究により,本手法はより拡張性が高く,同じ問題設定で他の手法よりも優れていることが示された。
関連論文リスト
- Learning to Boost the Performance of Stable Nonlinear Systems [0.0]
クローズドループ安定性保証による性能ブースティング問題に対処する。
本手法は,安定な非線形システムのための性能ブースティング制御器のニューラルネットワーククラスを任意に学習することを可能にする。
論文 参考訳(メタデータ) (2024-05-01T21:11:29Z) - Learning Over Contracting and Lipschitz Closed-Loops for
Partially-Observed Nonlinear Systems (Extended Version) [1.2430809884830318]
本稿では非線形な部分観測力学系に対する学習に基づく制御のためのポリシーパラメータ化を提案する。
結果のYoula-RENパラメータ化は自動的に安定性(収縮)とユーザチューニング可能な堅牢性(Lipschitz)を満足することを示した。
We found that the Youla-REN are also like to existing learning-based and optimal control method, also ensure stability and exhibiting improve robustness to adversarial disturbances。
論文 参考訳(メタデータ) (2023-04-12T23:55:56Z) - KCRL: Krasovskii-Constrained Reinforcement Learning with Guaranteed
Stability in Nonlinear Dynamical Systems [66.9461097311667]
形式的安定性を保証するモデルに基づく強化学習フレームワークを提案する。
提案手法は,特徴表現を用いて信頼区間までシステムダイナミクスを学習する。
我々は、KCRLが、基礎となる未知のシステムとの有限数の相互作用において安定化ポリシーを学ぶことが保証されていることを示す。
論文 参考訳(メタデータ) (2022-06-03T17:27:04Z) - Neural System Level Synthesis: Learning over All Stabilizing Policies
for Nonlinear Systems [0.0]
本稿では,パラメータ最適化における閉ループ安定性を保証するニューラルSLS(Neur-SLS)手法を提案する。
本稿では,Recurrent Equilibrium Networks (RENs) に基づく最近のDeep Neural Network (DNN) モデルを用いて,非線形安定演算子の豊富なクラスについて学習する。
論文 参考訳(メタデータ) (2022-03-22T15:22:31Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
本研究では, 局所的およびグローバルな平滑化手法の性能と, 状態測定値の偏差について検討・比較する。
一般に,測度データセット全体を用いたグローバルな手法は,局所点の周辺に隣接するデータサブセットを用いる局所的手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-01-29T23:31:25Z) - Youla-REN: Learning Nonlinear Feedback Policies with Robust Stability
Guarantees [5.71097144710995]
本稿では,最近開発されたニューラルネットワークアーキテクチャ上に構築された不確実性システムに対する非線形制御器のパラメータ化について述べる。
提案したフレームワークは、安定性の保証、すなわち、検索空間におけるすべてのポリシーが、契約(グローバルに指数関数的に安定した)クローズドループシステムをもたらすことを保証する。
論文 参考訳(メタデータ) (2021-12-02T13:52:37Z) - Learning Stable Koopman Embeddings [9.239657838690228]
本稿では,非線形システムの安定モデル学習のための新しいデータ駆動手法を提案する。
離散時間非線形契約モデルはすべて、我々のフレームワークで学習できることを実証する。
論文 参考訳(メタデータ) (2021-10-13T05:44:13Z) - Improper Learning with Gradient-based Policy Optimization [62.50997487685586]
未知のマルコフ決定過程に対して学習者がmベースコントローラを与えられる不適切な強化学習設定を考える。
制御器の不適切な混合のクラス上で動作する勾配に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2021-02-16T14:53:55Z) - Reinforcement Learning with Fast Stabilization in Linear Dynamical
Systems [91.43582419264763]
未知の安定化線形力学系におけるモデルベース強化学習(RL)について検討する。
本研究では,環境を効果的に探索することで,基盤システムの高速安定化を証明できるアルゴリズムを提案する。
提案アルゴリズムはエージェント環境相互作用の時間ステップで$tildemathcalO(sqrtT)$ regretを達成した。
論文 参考訳(メタデータ) (2020-07-23T23:06:40Z) - Active Learning for Nonlinear System Identification with Guarantees [102.43355665393067]
状態遷移が既知の状態-作用対の特徴埋め込みに線形に依存する非線形力学系のクラスについて検討する。
そこで本稿では, トラジェクティブ・プランニング, トラジェクティブ・トラッキング, システムの再推定という3つのステップを繰り返すことで, この問題を解決するためのアクティブ・ラーニング・アプローチを提案する。
本手法は, 非線形力学系を標準線形回帰の統計速度と同様, パラメトリック速度で推定する。
論文 参考訳(メタデータ) (2020-06-18T04:54:11Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
我々は不確実性に直面した楽観主義の原理に基づく新しい強化学習アルゴリズムLqgOptを提案する。
LqgOptはシステムのダイナミクスを効率的に探索し、モデルのパラメータを信頼区間まで推定し、最も楽観的なモデルのコントローラをデプロイする。
論文 参考訳(メタデータ) (2020-03-12T19:56:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。