論文の概要: Does Structure Matter? Leveraging Data-to-Text Generation for Answering
Complex Information Needs
- arxiv url: http://arxiv.org/abs/2112.04344v1
- Date: Wed, 8 Dec 2021 15:51:27 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-09 17:49:48.021145
- Title: Does Structure Matter? Leveraging Data-to-Text Generation for Answering
Complex Information Needs
- Title(参考訳): 構造は重要か?
複雑な情報ニーズに対するデータ・テキスト生成の活用
- Authors: Hanane Djeddal, Thomas Gerald, Laure Soulier, Karen Pinel-Sauvagnat,
Lynda Tamine
- Abstract要約: データ・テキスト・ジェネレーションの観点から,生成モデルの利用を想定する。
中間計画を生成することで回答を構造化することを目的とした,コンテンツ選択計画パイプラインの利用を提案する。
TREC Complex Answer Retrieval (CAR) データセットを用いて実験評価を行った。
- 参考スコア(独自算出の注目度): 3.5331191621809794
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, our aim is to provide a structured answer in natural language
to a complex information need. Particularly, we envision using generative
models from the perspective of data-to-text generation. We propose the use of a
content selection and planning pipeline which aims at structuring the answer by
generating intermediate plans. The experimental evaluation is performed using
the TREC Complex Answer Retrieval (CAR) dataset. We evaluate both the generated
answer and its corresponding structure and show the effectiveness of
planning-based models in comparison to a text-to-text model.
- Abstract(参考訳): 本研究の目的は,自然言語による複雑な情報要求に対する構造化された回答を提供することである。
特に,データからテキストへの生成の観点から,生成モデルの利用を想定する。
中間計画を生成することで回答を構造化することを目的とした,コンテンツ選択計画パイプラインの利用を提案する。
TREC Complex Answer Retrieval (CAR) データセットを用いて実験評価を行った。
生成した回答とその対応構造を評価し,テキスト・テキスト・モデルと比較し,計画ベースモデルの有効性を示す。
関連論文リスト
- RiTeK: A Dataset for Large Language Models Complex Reasoning over Textual Knowledge Graphs [12.846097618151951]
我々は,テキスト知識グラフ(RiTeK)を用いたLLMの複雑な推論のためのデータセットを開発し,広範なトポロジ的構造を網羅する。
多様なトポロジ構造、注釈付き情報、複雑なテキスト記述を統合した現実的なユーザクエリを合成する。
そこで我々はモンテカルロ木探索法 (CTS) を導入し, 特定のクエリに対してテキストグラフから関係経路情報を自動的に抽出する手法を提案する。
論文 参考訳(メタデータ) (2024-10-17T19:33:37Z) - Enhancing Structured-Data Retrieval with GraphRAG: Soccer Data Case Study [4.742245127121496]
Structured-GraphRAGは自然言語クエリにおける構造化データセット間の情報検索を強化するために設計された汎用フレームワークである。
その結果,Structured-GraphRAGはクエリ処理効率を大幅に改善し,応答時間を短縮することがわかった。
論文 参考訳(メタデータ) (2024-09-26T06:53:29Z) - Learning to Plan and Generate Text with Citations [69.56850173097116]
提案手法は, テキストの忠実性, 接地性, 制御性を向上させるために最近実証されたプランベースモデルの帰属性について検討する。
本稿では,異なるブループリントの変種を利用する帰属モデルと,質問をゼロから生成する抽象モデルと,質問を入力からコピーする抽出モデルを提案する。
論文 参考訳(メタデータ) (2024-04-04T11:27:54Z) - StructGPT: A General Framework for Large Language Model to Reason over
Structured Data [117.13986738340027]
我々は,構造化データに基づく質問応答タスクの解法として,emphIterative Reading-then-Reasoning(IRR)アプローチを開発した。
提案手法はChatGPTの性能を大幅に向上させ,全データの教師付きベースラインに対して同等のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-05-16T17:45:23Z) - DeepStruct: Pretraining of Language Models for Structure Prediction [64.84144849119554]
テキストから構造を生成するために,タスクに依存しないコーパスの集合上で言語モデルを事前訓練する。
我々の構造事前学習は、モデルが構造タスクについて持っている学習知識のゼロショット転送を可能にする。
10Bパラメータ言語モデルがほとんどのタスクに非自明に転送し、28のデータセットのうち21の最先端のパフォーマンスを得ることを示す。
論文 参考訳(メタデータ) (2022-05-21T00:58:22Z) - Data-to-text Generation with Variational Sequential Planning [74.3955521225497]
非言語的な入力からテキスト出力を生成することを目的としたデータ・ツー・テキスト生成の課題について考察する。
協調的かつ有意義な方法で高レベルの情報を整理する責任を負う計画要素を付加したニューラルモデルを提案する。
我々は、計画と生成のステップをインターリーブしながら、構造化された変動モデルで逐次、潜在計画を推測する。
論文 参考訳(メタデータ) (2022-02-28T13:17:59Z) - Improving Compositional Generalization with Self-Training for
Data-to-Text Generation [36.973617793800315]
データ・テキスト・タスクにおける現在の生成モデルの合成一般化について検討する。
構成的気象データセットの構造変化をシミュレートすることにより、T5モデルは目に見えない構造に一般化できないことを示す。
擬似応答選択のための細調整BLEURTを用いた自己学習に基づく手法を提案する。
論文 参考訳(メタデータ) (2021-10-16T04:26:56Z) - Text Modular Networks: Learning to Decompose Tasks in the Language of
Existing Models [61.480085460269514]
本稿では,既存のモデルで解けるより単純なモデルに分解することで,複雑なタスクを解くための解釈可能なシステムを構築するためのフレームワークを提案する。
我々はこのフレームワークを用いて、ニューラルネットワークのファクトイド単一スパンQAモデルとシンボリック電卓で答えられるサブクエストに分解することで、マルチホップ推論問題に答えられるシステムであるModularQAを構築する。
論文 参考訳(メタデータ) (2020-09-01T23:45:42Z) - A Revised Generative Evaluation of Visual Dialogue [80.17353102854405]
本稿では,VisDialデータセットの改訂評価手法を提案する。
モデルが生成した回答と関連する回答の集合のコンセンサスを測定する。
DenseVisDialとして改訂された評価スキームのこれらのセットとコードをリリースする。
論文 参考訳(メタデータ) (2020-04-20T13:26:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。