Which images to label for few-shot medical landmark detection?
- URL: http://arxiv.org/abs/2112.04386v3
- Date: Sun, 28 Apr 2024 05:13:35 GMT
- Title: Which images to label for few-shot medical landmark detection?
- Authors: Quan Quan, Qingsong Yao, Jun Li, S. Kevin Zhou,
- Abstract summary: We propose a novel Sample Choosing Policy ( SCP) to select "the most worthy" images for annotation.
SCP consists of three parts: 1) Self-supervised training for building a pre-trained deep model to extract features from radiological images, 2) Key Point Proposal for localizing informative patches, and 3) Representative Score Estimation for searching the most representative samples or templates.
For one-shot medical landmark detection, its use reduces the mean radial errors on Cephalometric and HandXray datasets by 14.2% and 35.5%, respectively.
- Score: 27.23114378514831
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The success of deep learning methods relies on the availability of well-labeled large-scale datasets. However, for medical images, annotating such abundant training data often requires experienced radiologists and consumes their limited time. Few-shot learning is developed to alleviate this burden, which achieves competitive performances with only several labeled data. However, a crucial yet previously overlooked problem in few-shot learning is about the selection of template images for annotation before learning, which affects the final performance. We herein propose a novel Sample Choosing Policy (SCP) to select "the most worthy" images for annotation, in the context of few-shot medical landmark detection. SCP consists of three parts: 1) Self-supervised training for building a pre-trained deep model to extract features from radiological images, 2) Key Point Proposal for localizing informative patches, and 3) Representative Score Estimation for searching the most representative samples or templates. The advantage of SCP is demonstrated by various experiments on three widely-used public datasets. For one-shot medical landmark detection, its use reduces the mean radial errors on Cephalometric and HandXray datasets by 14.2% (from 3.595mm to 3.083mm) and 35.5% (4.114mm to 2.653mm), respectively.
Related papers
- Self-supervised pre-training with diffusion model for few-shot landmark detection in x-ray images [0.8793721044482612]
This study introduces a novel application of denoising diffusion probabilistic models (DDPMs) to the landmark detection task.
Our key innovation lies in leveraging DDPMs for self-supervised pre-training in landmark detection.
This method enables accurate landmark detection with minimal annotated training data.
arXiv Detail & Related papers (2024-07-25T15:32:59Z) - Leveraging Neural Radiance Fields for Uncertainty-Aware Visual
Localization [56.95046107046027]
We propose to leverage Neural Radiance Fields (NeRF) to generate training samples for scene coordinate regression.
Despite NeRF's efficiency in rendering, many of the rendered data are polluted by artifacts or only contain minimal information gain.
arXiv Detail & Related papers (2023-10-10T20:11:13Z) - OneSeg: Self-learning and One-shot Learning based Single-slice
Annotation for 3D Medical Image Segmentation [36.50258132379276]
We propose a self-learning and one-shot learning based framework for 3D medical image segmentation by annotating only one slice of each 3D image.
Our approach takes two steps: (1) self-learning of a reconstruction network to learn semantic correspondence among 2D slices within 3D images, and (2) representative selection of single slices for one-shot manual annotation.
Our new framework achieves comparable performance with less than 1% annotated data compared with fully supervised methods.
arXiv Detail & Related papers (2023-09-24T15:35:58Z) - FBA-Net: Foreground and Background Aware Contrastive Learning for
Semi-Supervised Atrium Segmentation [10.11072886547561]
We propose a contrastive learning strategy of foreground and background representations for semi-supervised 3D medical image segmentation.
Our framework has the potential to advance the field of semi-supervised 3D medical image segmentation.
arXiv Detail & Related papers (2023-06-27T04:14:50Z) - Significantly improving zero-shot X-ray pathology classification via fine-tuning pre-trained image-text encoders [50.689585476660554]
We propose a new fine-tuning strategy that includes positive-pair loss relaxation and random sentence sampling.
Our approach consistently improves overall zero-shot pathology classification across four chest X-ray datasets and three pre-trained models.
arXiv Detail & Related papers (2022-12-14T06:04:18Z) - Solving Sample-Level Out-of-Distribution Detection on 3D Medical Images [0.06117371161379209]
Out-of-distribution (OOD) detection helps to identify data samples, increasing the model's reliability.
Recent works have developed DL-based OOD detection that achieves promising results on 2D medical images.
However, scaling most of these approaches on 3D images is computationally intractable.
We propose a histogram-based method that requires no DL and achieves almost perfect results in this domain.
arXiv Detail & Related papers (2022-12-13T11:42:23Z) - Self-Supervised-RCNN for Medical Image Segmentation with Limited Data
Annotation [0.16490701092527607]
We propose an alternative deep learning training strategy based on self-supervised pretraining on unlabeled MRI scans.
Our pretraining approach first, randomly applies different distortions to random areas of unlabeled images and then predicts the type of distortions and loss of information.
The effectiveness of the proposed method for segmentation tasks in different pre-training and fine-tuning scenarios is evaluated.
arXiv Detail & Related papers (2022-07-17T13:28:52Z) - Self-Supervised Learning as a Means To Reduce the Need for Labeled Data
in Medical Image Analysis [64.4093648042484]
We use a dataset of chest X-ray images with bounding box labels for 13 different classes of anomalies.
We show that it is possible to achieve similar performance to a fully supervised model in terms of mean average precision and accuracy with only 60% of the labeled data.
arXiv Detail & Related papers (2022-06-01T09:20:30Z) - CutPaste: Self-Supervised Learning for Anomaly Detection and
Localization [59.719925639875036]
We propose a framework for building anomaly detectors using normal training data only.
We first learn self-supervised deep representations and then build a generative one-class classifier on learned representations.
Our empirical study on MVTec anomaly detection dataset demonstrates the proposed algorithm is general to be able to detect various types of real-world defects.
arXiv Detail & Related papers (2021-04-08T19:04:55Z) - Cascaded Robust Learning at Imperfect Labels for Chest X-ray
Segmentation [61.09321488002978]
We present a novel cascaded robust learning framework for chest X-ray segmentation with imperfect annotation.
Our model consists of three independent network, which can effectively learn useful information from the peer networks.
Our methods could achieve a significant improvement on the accuracy in segmentation tasks compared to the previous methods.
arXiv Detail & Related papers (2021-04-05T15:50:16Z) - Deep Q-Network-Driven Catheter Segmentation in 3D US by Hybrid
Constrained Semi-Supervised Learning and Dual-UNet [74.22397862400177]
We propose a novel catheter segmentation approach, which requests fewer annotations than the supervised learning method.
Our scheme considers a deep Q learning as the pre-localization step, which avoids voxel-level annotation.
With the detected catheter, patch-based Dual-UNet is applied to segment the catheter in 3D volumetric data.
arXiv Detail & Related papers (2020-06-25T21:10:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.