Symmetry Protected Topological Order in Open Quantum Systems
- URL: http://arxiv.org/abs/2112.04483v3
- Date: Wed, 9 Nov 2022 12:21:24 GMT
- Title: Symmetry Protected Topological Order in Open Quantum Systems
- Authors: Caroline de Groot, Alex Turzillo and Norbert Schuch
- Abstract summary: We find that one-dimensional symmetry protected topological (SPT) order is robust against noisy couplings to the environment that satisfy a strong symmetry condition.
We discuss "transmutation" of SPT phases into other SPT phases of equal or lesser complexity, under noisy channels that satisfy twisted versions of the strong symmetry condition.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We systematically investigate the robustness of symmetry protected
topological (SPT) order in open quantum systems by studying the evolution of
string order parameters and other probes under noisy channels. We find that
one-dimensional SPT order is robust against noisy couplings to the environment
that satisfy a strong symmetry condition, while it is destabilized by noise
that satisfies only a weak symmetry condition, which generalizes the notion of
symmetry for closed systems. We also discuss "transmutation" of SPT phases into
other SPT phases of equal or lesser complexity, under noisy channels that
satisfy twisted versions of the strong symmetry condition.
Related papers
- Strong-to-weak spontaneous symmetry breaking meets average symmetry-protected topological order [17.38734393793605]
We propose a new class of phases, termed the double ASPT phase, which emerges from a nontrivial extension of these two orders.
This new phase is absent from prior studies and cannot exist in conventional closed systems.
arXiv Detail & Related papers (2024-10-17T16:36:53Z) - Robust Symmetry Detection via Riemannian Langevin Dynamics [39.342336146118015]
We propose a novel symmetry detection method that marries classical symmetry detection techniques with recent advances in generative modeling.
Specifically, we apply Langevin dynamics to a symmetry space to enhance robustness against noise.
We provide empirical results on a variety of shapes that suggest our method is not only robust to noise, but can also identify both partial and global symmetries.
arXiv Detail & Related papers (2024-09-18T02:28:20Z) - Strong-to-weak symmetry breaking states in stochastic dephasing stabilizer circuits [0.0]
Under symmetry-respective decoherence, spontaneous strong-to-weak symmetry breaking can occur.
This work provides a scheme to describe S SSB and other decoherence phenomena in the mixed state by employing the stabilizer formalism and the efficient numerical algorithm of Clifford circuits.
arXiv Detail & Related papers (2024-08-08T06:03:23Z) - Spontaneous symmetry breaking in open quantum systems: strong, weak, and strong-to-weak [4.41737598556146]
We show that strong symmetry always spontaneously breaks into the corresponding weak symmetry.
We conjecture that this relation among strong-to-weak symmetry breaking, gapless modes, and symmetry-charge diffusion is general for continuous symmetries.
arXiv Detail & Related papers (2024-06-27T17:55:36Z) - Computational Characterization of Symmetry-Protected Topological Phases in Open Quantum Systems [0.0]
Gate fidelity is a measure of the computational power of the measurement-based quantum computation.
We show that the fidelity for the identity gate, which is given by the sum of the non-local string order parameters, plays an important role.
arXiv Detail & Related papers (2024-05-28T17:00:17Z) - Symmetry Protected Topological Phases of Mixed States in the Doubled Space [0.0]
We study the interplay of symmetry and topology in quantum many-body mixed states.
In a phenomenon not seen in pure states, mixed states can exhibit average symmetries.
We study the patterns of spontaneous symmetry breaking ( SSB) of mixed states.
arXiv Detail & Related papers (2024-03-20T03:40:28Z) - Symmetry-restricted quantum circuits are still well-behaved [45.89137831674385]
We show that quantum circuits restricted by a symmetry inherit the properties of the whole special unitary group $SU(2n)$.
It extends prior work on symmetric states to the operators and shows that the operator space follows the same structure as the state space.
arXiv Detail & Related papers (2024-02-26T06:23:39Z) - Higher-Order Cellular Automata Generated Symmetry-Protected Topological Phases and Detection Through Multi-Point Strange Correlators [21.052345471463802]
We introduce HOCA to quantum many-body physics and construct a series of symmetry-protected topological (SPT) phases of matter.
We show that HOCA can generate not only well-understood SPTs with symmetries supported on either regular (e.g., line-like subsystems in the 2D cluster model) or fractal subsystems, but also a large class of unexplored SPTs with symmetries supported on more choices of subsystems.
arXiv Detail & Related papers (2023-12-31T13:56:20Z) - Efficient quantum algorithms for testing symmetries of open quantum
systems [17.55887357254701]
In quantum mechanics, it is possible to eliminate degrees of freedom by leveraging symmetry to identify the possible physical transitions.
Previous works have focused on devising quantum algorithms to ascertain symmetries by means of fidelity-based symmetry measures.
We develop alternative symmetry testing quantum algorithms that are efficiently implementable on quantum computers.
arXiv Detail & Related papers (2023-09-05T18:05:26Z) - Bulk-boundary correspondence for intrinsically-gapless SPTs from group
cohomology [3.299672391663527]
Intrinsically gapless symmetry protected topological phases (igSPT) are gapless systems with SPT edge states.
An anomaly in the low-energy (IR) symmetry group emerges from an extended anomaly-free microscopic (UV) symmetry.
In two- and three-dimensional systems, an additional possibility is that the emergent anomaly can be satisfied by an anomalous symmetry-enriched topological order.
arXiv Detail & Related papers (2022-08-18T18:00:04Z) - Noise-resilient Edge Modes on a Chain of Superconducting Qubits [103.93329374521808]
Inherent symmetry of a quantum system may protect its otherwise fragile states.
We implement the one-dimensional kicked Ising model which exhibits non-local Majorana edge modes (MEMs) with $mathbbZ$ parity symmetry.
MEMs are found to be resilient against certain symmetry-breaking noise owing to a prethermalization mechanism.
arXiv Detail & Related papers (2022-04-24T22:34:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.