論文の概要: Daily peak electrical load forecasting with a multi-resolution approach
- arxiv url: http://arxiv.org/abs/2112.04492v1
- Date: Wed, 8 Dec 2021 13:14:38 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-10 15:51:23.230485
- Title: Daily peak electrical load forecasting with a multi-resolution approach
- Title(参考訳): 多分解能アプローチによる日ピーク電気負荷予測
- Authors: Yvenn Amara-Ouali and Matteo Fasiolo and Yannig Goude and Hui Yan
- Abstract要約: ピークシェービングのようなスマートグリッド戦略の実装には,ピークマグニチュードとタイミングの理解が最重要である。
本稿では,高分解能かつ低分解能な情報を利用して,日次ピーク需要の規模とタイミングを予測する手法を提案する。
結果として生じるマルチ解像度モデリングフレームワークは、異なるモデルクラスに適応することができる。
- 参考スコア(独自算出の注目度): 2.207988653560308
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the context of smart grids and load balancing, daily peak load forecasting
has become a critical activity for stakeholders of the energy industry. An
understanding of peak magnitude and timing is paramount for the implementation
of smart grid strategies such as peak shaving. The modelling approach proposed
in this paper leverages high-resolution and low-resolution information to
forecast daily peak demand size and timing. The resulting multi-resolution
modelling framework can be adapted to different model classes. The key
contributions of this paper are a) a general and formal introduction to the
multi-resolution modelling approach, b) a discussion on modelling approaches at
different resolutions implemented via Generalised Additive Models and Neural
Networks and c) experimental results on real data from the UK electricity
market. The results confirm that the predictive performance of the proposed
modelling approach is competitive with that of low- and high-resolution
alternatives.
- Abstract(参考訳): スマートグリッドとロードバランシングの文脈では、日々のピーク負荷予測はエネルギー産業の利害関係者にとって重要な活動となっている。
ピークシェービングのようなスマートグリッド戦略の実装には,ピークマグニチュードとタイミングの理解が最重要である。
本稿では,高分解能・低分解能情報を活用し,日々のピーク需要量とタイミングを予測するモデリング手法を提案する。
結果として生じるマルチレゾリューションモデリングフレームワークは、異なるモデルクラスに適応することができる。
この論文の主な貢献は
a) マルチレゾリューション・モデリング・アプローチの一般的かつ公式な導入
ロ 一般化付加モデル及びニューラルネットワークを用いて実施した異なる解像度でのモデリングアプローチに関する議論
c) 英国電力市場における実データに関する実験結果
その結果,提案手法の予測性能は低分解能および高分解能の代替案と競合することがわかった。
関連論文リスト
- A Collaborative Ensemble Framework for CTR Prediction [73.59868761656317]
我々は、複数の異なるモデルを活用するための新しいフレームワーク、CETNet(Collaborative Ensemble Training Network)を提案する。
ナイーブなモデルスケーリングとは違って,私たちのアプローチは,共同学習による多様性とコラボレーションを重視しています。
当社のフレームワークは,Metaの3つのパブリックデータセットと大規模産業データセットに基づいて検証する。
論文 参考訳(メタデータ) (2024-11-20T20:38:56Z) - Who should I trust? A Visual Analytics Approach for Comparing Net Load Forecasting Models [0.562479170374811]
本稿では,ディープラーニングに基づくネット負荷予測モデルと,確率的ネット負荷予測のための他のモデルとの比較を目的とした,ビジュアル分析に基づくアプリケーションを提案する。
このアプリケーションは慎重に選択された視覚分析の介入を採用しており、ユーザーは異なる太陽透過レベル、データセットの解像度、数ヵ月間の1日の時間におけるモデルパフォーマンスの違いを識別することができる。
論文 参考訳(メタデータ) (2024-07-31T02:57:21Z) - FIARSE: Model-Heterogeneous Federated Learning via Importance-Aware Submodel Extraction [26.26211464623954]
Federated Importance-Aware Submodel extract (FIARSE)は、モデルパラメータの重要性に基づいて、サブモデルを動的に調整する新しいアプローチである。
既存の研究と比較して,提案手法はサブモデル抽出の理論的基礎を提供する。
提案したFIARSEの優れた性能を示すため,様々なデータセットで大規模な実験を行った。
論文 参考訳(メタデータ) (2024-07-28T04:10:11Z) - Bridging Model-Based Optimization and Generative Modeling via Conservative Fine-Tuning of Diffusion Models [54.132297393662654]
本稿では,RLによる報酬モデルの最適化により,最先端拡散モデルを微調整するハイブリッド手法を提案する。
我々は、報酬モデルの補間能力を活用し、オフラインデータにおいて最良の設計を上回るアプローチの能力を実証する。
論文 参考訳(メタデータ) (2024-05-30T03:57:29Z) - Decision-Focused Forecasting: Decision Losses for Multistage Optimisation [0.0]
本稿では,予測の時間的時間的決定効果を考慮した多層モデルである決定中心予測を提案する。
本モデルでは,予測による状態パスを考慮した調整を行った。
エネルギー貯蔵調停タスクへのモデルの適用を実証し,本モデルが既存手法より優れていることを報告する。
論文 参考訳(メタデータ) (2024-05-23T15:48:46Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
近似機械学習モデルの集合に対する競合予測の効果について検討する。
ラーショモン集合内のモデル間の係り受けに関する理論的結果を示す。
当社のアプローチは、コンシューマ向けアプリケーションにおいて、より予測し、削減し、混乱を避けるためにどのように使用できるかを示します。
論文 参考訳(メタデータ) (2024-02-12T16:15:25Z) - Denoising diffusion probabilistic models for probabilistic energy
forecasting [0.0]
本稿では,拡散確率モデルと呼ばれる有望なディープラーニング生成手法を提案する。
これは、最近コンピュータビジョンコミュニティで印象的な結果を実証した潜伏変数モデルのクラスである。
我々は,2014年のGlobal Energy Forecasting Competitionのオープンデータを用いたエネルギー予測モデルの最初の実装を提案する。
論文 参考訳(メタデータ) (2022-12-06T13:50:17Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
モデルベースRL(MBRL)の非遅延性能保証のための新規で一般的な理論スキームを提案する。
続いて導いた境界は、モデルシフトとパフォーマンス改善の関係を明らかにします。
さらなる例では、動的に変化する探索からの学習モデルが、最終的なリターンの恩恵をもたらすことが示されている。
論文 参考訳(メタデータ) (2022-10-15T17:57:43Z) - Planning with Diffusion for Flexible Behavior Synthesis [125.24438991142573]
我々は、できるだけ多くの軌道最適化パイプラインをモデリング問題に折り畳むことがどう見えるか検討する。
我々の技術的アプローチの核心は、軌道を反復的にデノベーションすることで計画する拡散確率モデルにある。
論文 参考訳(メタデータ) (2022-05-20T07:02:03Z) - Quadratic mutual information regularization in real-time deep CNN models [51.66271681532262]
擬似相互情報による正規化手法を提案する。
種々の二項分類問題の実験を行い,提案モデルの有効性を示した。
論文 参考訳(メタデータ) (2021-08-26T13:14:24Z) - Smoothed Bernstein Online Aggregation for Day-Ahead Electricity Demand
Forecasting [0.0]
本稿では,日頭電力需要予測におけるIEEE DataPortコンペティションの勝利方法について述べる。
日頭負荷予測手法は、複数点予測モデルのオンライン予測組み合わせに基づいている。
このアプローチは柔軟で、新型コロナウイルス(COVID-19)のシャットダウンの前後で発生した新しいエネルギーシステムに迅速に適用することができる。
論文 参考訳(メタデータ) (2021-07-13T17:51:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。