論文の概要: Surrogate-data-enriched Physics-Aware Neural Networks
- arxiv url: http://arxiv.org/abs/2112.05489v1
- Date: Fri, 10 Dec 2021 12:39:07 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-13 19:52:08.259737
- Title: Surrogate-data-enriched Physics-Aware Neural Networks
- Title(参考訳): 代理データ強化物理対応ニューラルネットワーク
- Authors: Raphael Leiteritz, Patrick Buchfink, Bernard Haasdonk, Dirk Pfl\"uger
- Abstract要約: そこで我々は,低次モデル (ROM) のような他の代用モデルから得られる,安価だが不正確なデータを用いて,物理認識モデルをどのように豊かにすることができるかを検討する。
概念実証として, 1次元波動方程式を考察し, ROMからの不正確なデータが組み込まれた場合, トレーニング精度が2桁に向上することを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural networks can be used as surrogates for PDE models. They can be made
physics-aware by penalizing underlying equations or the conservation of
physical properties in the loss function during training. Current approaches
allow to additionally respect data from numerical simulations or experiments in
the training process. However, this data is frequently expensive to obtain and
thus only scarcely available for complex models. In this work, we investigate
how physics-aware models can be enriched with computationally cheaper, but
inexact, data from other surrogate models like Reduced-Order Models (ROMs). In
order to avoid trusting too-low-fidelity surrogate solutions, we develop an
approach that is sensitive to the error in inexact data. As a proof of concept,
we consider the one-dimensional wave equation and show that the training
accuracy is increased by two orders of magnitude when inexact data from ROMs is
incorporated.
- Abstract(参考訳): ニューラルネットワークはPDEモデルのサロゲートとして使用できる。
基礎となる方程式をペナルタイズしたり、訓練中に損失関数の物理的性質を保存したりすることで、物理学的に認識することができる。
現在のアプローチでは、トレーニングプロセスにおける数値シミュレーションや実験のデータも参照できる。
しかし、このデータは得るのにしばしば費用がかかり、複雑なモデルでしか利用できない。
本研究では,低次モデル (roms) など他のサロゲートモデルから得られたデータを用いて,物理認識モデルが計算量的に安価だが不正確であることを示す。
低忠実度なサロゲートソリューションを信頼しすぎるのを避けるため、不正確データのエラーに敏感なアプローチを開発します。
概念実証として, 1次元波動方程式を考察し, ROMからの不正確なデータが組み込まれた場合, トレーニング精度が2桁に向上することを示す。
関連論文リスト
- Training Deep Surrogate Models with Large Scale Online Learning [48.7576911714538]
ディープラーニングアルゴリズムは、PDEの高速解を得るための有効な代替手段として登場した。
モデルは通常、ソルバによって生成された合成データに基づいてトレーニングされ、ディスクに格納され、トレーニングのために読み返される。
ディープサロゲートモデルのためのオープンソースのオンライントレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-28T12:02:27Z) - Machine Learning Force Fields with Data Cost Aware Training [94.78998399180519]
分子動力学(MD)シミュレーションを加速するために機械学習力場(MLFF)が提案されている。
最もデータ効率のよいMLFFであっても、化学精度に達するには数百フレームの力とエネルギーのラベルが必要になる。
我々は、安価な不正確なデータと高価な正確なデータの組み合わせを利用して、MLFFのデータコストを下げる多段階計算フレームワークASTEROIDを提案する。
論文 参考訳(メタデータ) (2023-06-05T04:34:54Z) - AI Model Disgorgement: Methods and Choices [127.54319351058167]
本稿では,現代の機械学習システムに適用可能な分類法を紹介する。
学習モデルにおけるデータ「効果の除去」の意味を,スクラッチからリトレーニングする必要のない方法で検討する。
論文 参考訳(メタデータ) (2023-04-07T08:50:18Z) - Deep Physics Corrector: A physics enhanced deep learning architecture
for solving stochastic differential equations [0.0]
微分方程式(SDE)によって制御される物理系に対する新しいグレーボックスモデリングアルゴリズムを提案する。
提案手法はDeep Physics Corrector(DPC)と呼ばれ、SDEとDeep Neural Network(DNN)で表される近似物理学をブレンドする。
本論文では,本論文の4つのベンチマーク例について,提案したDPCの性能について述べる。
論文 参考訳(メタデータ) (2022-09-20T14:30:07Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
我々は,動的・シミュレータモデルと実ロボット間の残差を学習する。
学習した残差誤差により、動的モデル、シミュレーション、および実際のハードウェア間の現実的ギャップをさらに埋めることができることを示す。
論文 参考訳(メタデータ) (2022-09-07T15:15:12Z) - Physics-based Digital Twins for Autonomous Thermal Food Processing:
Efficient, Non-intrusive Reduced-order Modeling [0.0]
本稿では,自律食品処理のための物理に基づくデータ駆動型Digital Twinフレームワークを提案する。
ROM試験におけるトレーニングデータの表面温度の標準偏差と低根平均二乗誤差との相関は、トレーニングデータの効率的な選択を可能にする。
論文 参考訳(メタデータ) (2022-09-07T10:58:38Z) - Simultaneous boundary shape estimation and velocity field de-noising in
Magnetic Resonance Velocimetry using Physics-informed Neural Networks [70.7321040534471]
MRV(MR resonance velocimetry)は、流体の速度場を測定するために医療や工学で広く用いられている非侵襲的な技術である。
これまでの研究では、境界(例えば血管)の形状が先駆体として知られていた。
我々は、ノイズの多いMRVデータのみを用いて、最も可能性の高い境界形状と減音速度場を推定する物理インフォームニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-07-16T12:56:09Z) - Model-Constrained Deep Learning Approaches for Inverse Problems [0.0]
ディープラーニング(DL)は純粋にデータ駆動であり、物理を必要としない。
元の形式におけるDL法は、基礎となる数学的モデルを尊重することができない。
一般非線形問題に対する定式化の直観を提示する。
論文 参考訳(メタデータ) (2021-05-25T16:12:39Z) - Contrastive Model Inversion for Data-Free Knowledge Distillation [60.08025054715192]
そこで、データ多様性を最適化可能な目的として明示的にモデル化するContrastive Model Inversionを提案します。
我々の主な観察では、同じ量のデータの制約の下では、高いデータの多様性は、通常より強いインスタンス識別を示す。
CIFAR-10, CIFAR-100, Tiny-ImageNetを用いた実験により, 生成したデータを知識蒸留に使用する場合, CMIは極めて優れた性能を示すことが示された。
論文 参考訳(メタデータ) (2021-05-18T15:13:00Z) - Transfer learning based multi-fidelity physics informed deep neural
network [0.0]
支配微分方程式は、近似的な意味では知られていないか、知られているかのどちらかである。
本稿では,深部ニューラルネットワーク(MF-PIDNN)を用いた多要素物理について述べる。
MF-PIDNNは、転送学習の概念を用いて、物理情報とデータ駆動型ディープラーニング技術をブレンドする。
論文 参考訳(メタデータ) (2020-05-19T13:57:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。