論文の概要: Model-Agnostic Knowledge Guided Correction for Improved Neural Surrogate Rollout
- arxiv url: http://arxiv.org/abs/2503.10048v2
- Date: Fri, 14 Mar 2025 17:02:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-17 13:06:34.916436
- Title: Model-Agnostic Knowledge Guided Correction for Improved Neural Surrogate Rollout
- Title(参考訳): 改良型ニューラルサロゲートロールアウトのためのモデル非依存的知識誘導補正
- Authors: Bharat Srikishan, Daniel O'Malley, Mohamed Mehana, Nicholas Lubbers, Nikhil Muralidhar,
- Abstract要約: 本稿では,ニューラルサロゲート,RL決定モデル,物理シミュレータを組み合わせることで,ロールアウト誤差を大幅に低減するモデルに依存しないコスト認識モデルを提案する。
HyPERは、物理的条件の変化に適応し、騒音の破損に抵抗するインテリジェントなポリシーを学ぶ。
- 参考スコア(独自算出の注目度): 3.006104092368596
- License:
- Abstract: Modeling the evolution of physical systems is critical to many applications in science and engineering. As the evolution of these systems is governed by partial differential equations (PDEs), there are a number of computational simulations which resolve these systems with high accuracy. However, as these simulations incur high computational costs, they are infeasible to be employed for large-scale analysis. A popular alternative to simulators are neural network surrogates which are trained in a data-driven manner and are much more computationally efficient. However, these surrogate models suffer from high rollout error when used autoregressively, especially when confronted with training data paucity. Existing work proposes to improve surrogate rollout error by either including physical loss terms directly in the optimization of the model or incorporating computational simulators as `differentiable layers' in the neural network. Both of these approaches have their challenges, with physical loss functions suffering from slow convergence for stiff PDEs and simulator layers requiring gradients which are not always available, especially in legacy simulators. We propose the Hybrid PDE Predictor with Reinforcement Learning (HyPER) model: a model-agnostic, RL based, cost-aware model which combines a neural surrogate, RL decision model, and a physics simulator (with or without gradients) to reduce surrogate rollout error significantly. In addition to reducing in-distribution rollout error by 47%-78%, HyPER learns an intelligent policy that is adaptable to changing physical conditions and resistant to noise corruption. Code available at https://github.com/scailab/HyPER.
- Abstract(参考訳): 物理システムの進化をモデル化することは、科学や工学における多くの応用にとって重要である。
これらのシステムの進化は偏微分方程式(PDE)によって制御されるため、これらのシステムを高精度に解決する計算シミュレーションが多数存在する。
しかし、これらのシミュレーションは計算コストが高いため、大規模解析に利用することは不可能である。
シミュレータの一般的な代替手段は、データ駆動方式でトレーニングされたニューラルネットワークサロゲートであり、より計算効率がよい。
しかし、これらのサロゲートモデルは、特にトレーニングデータに直面する場合、自己回帰的に使用する場合、高いロールアウト誤差に悩まされる。
既存の研究では、モデルの最適化に直接物理損失項を含めるか、ニューラルネットワークの「微分可能な層」として計算シミュレータを組み込むことで、ロールアウトエラーのサロゲートを改善することが提案されている。
これらのアプローチにはいずれも課題があり、物理的損失関数は固いPDEの緩やかな収束に悩まされ、特にレガシーシミュレータでは必ずしも利用できない勾配を必要とするシミュレーター層である。
本稿では,ニューラルネットワーク,RL決定モデル,および物理シミュレータ(勾配の有無にかかわらず)を組み合わせたモデルに依存しないRLに基づくコスト認識モデルであるHybrid PDE Predictor with Reinforcement Learning (HyPER)モデルを提案する。
流通中のロールアウトエラーを47%-78%削減することに加え、HyPERは物理的条件の変化に適応し、騒音の破損に抵抗するインテリジェントなポリシーを学習する。
コードはhttps://github.com/scailab/HyPER.comで公開されている。
関連論文リスト
- Metamizer: a versatile neural optimizer for fast and accurate physics simulations [4.717325308876749]
本稿では,広範囲の物理システムを高精度で反復的に解く,新しいニューラルネットワークであるMetamizerを紹介する。
我々は,メタマイザがディープラーニングに基づくアプローチにおいて,前例のない精度で達成できることを実証した。
以上の結果から,メタミザーは将来の数値解法に大きな影響を与える可能性が示唆された。
論文 参考訳(メタデータ) (2024-10-10T11:54:31Z) - Training Deep Surrogate Models with Large Scale Online Learning [48.7576911714538]
ディープラーニングアルゴリズムは、PDEの高速解を得るための有効な代替手段として登場した。
モデルは通常、ソルバによって生成された合成データに基づいてトレーニングされ、ディスクに格納され、トレーニングのために読み返される。
ディープサロゲートモデルのためのオープンソースのオンライントレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-28T12:02:27Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
完全深層学習に基づくサロゲートモデルとして,LAMP(Learning Controllable Adaptive Simulation for Multi- resolution Physics)を導入した。
LAMPは、前方進化を学習するためのグラフニューラルネットワーク(GNN)と、空間的洗練と粗大化のポリシーを学ぶためのGNNベースのアクター批判で構成されている。
我々は,LAMPが最先端のディープラーニングサロゲートモデルより優れており,長期予測誤差を改善するために,適応的なトレードオフ計算が可能であることを実証した。
論文 参考訳(メタデータ) (2023-05-01T23:20:27Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Real-time simulation of viscoelastic tissue behavior with physics-guided
deep learning [0.8250374560598492]
軟部組織の変位場を粘弾性特性で予測する深層学習法を提案する。
提案手法は従来のCNNモデルよりも精度が高い。
本調査は,仮想現実における深層学習のギャップを埋めるのに役立つものと期待されている。
論文 参考訳(メタデータ) (2023-01-11T18:17:10Z) - Deep Physics Corrector: A physics enhanced deep learning architecture
for solving stochastic differential equations [0.0]
微分方程式(SDE)によって制御される物理系に対する新しいグレーボックスモデリングアルゴリズムを提案する。
提案手法はDeep Physics Corrector(DPC)と呼ばれ、SDEとDeep Neural Network(DNN)で表される近似物理学をブレンドする。
本論文では,本論文の4つのベンチマーク例について,提案したDPCの性能について述べる。
論文 参考訳(メタデータ) (2022-09-20T14:30:07Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
我々は,動的・シミュレータモデルと実ロボット間の残差を学習する。
学習した残差誤差により、動的モデル、シミュレーション、および実際のハードウェア間の現実的ギャップをさらに埋めることができることを示す。
論文 参考訳(メタデータ) (2022-09-07T15:15:12Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
本研究では3次元地下流体の貯留層シミュレーションを学習するためのハイブリッドグラフネットワークシミュレータ (HGNS) を提案する。
HGNSは、流体の進化をモデル化する地下グラフニューラルネットワーク(SGNN)と、圧力の進化をモデル化する3D-U-Netで構成されている。
産業標準地下フローデータセット(SPE-10)と1100万セルを用いて,HGNSが標準地下シミュレータの18倍の推算時間を短縮できることを実証した。
論文 参考訳(メタデータ) (2022-06-15T17:29:57Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。