論文の概要: Unraveling Social Perceptions & Behaviors towards Migrants on Twitter
- arxiv url: http://arxiv.org/abs/2112.06642v1
- Date: Sat, 4 Dec 2021 20:45:26 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-19 15:14:50.029998
- Title: Unraveling Social Perceptions & Behaviors towards Migrants on Twitter
- Title(参考訳): twitter上での社会認識と移民に対する行動の解明
- Authors: Aparup Khatua, Wolfgang Nejdl
- Abstract要約: 我々は、ソーシャルメディア利用者の移民に対する2つの一般的な認識(共感と反感)と2つの支配的な行動(連帯と敵意)を識別する。
提案する変換器ベースモデルであるBERT + CNNは、F1スコアが0.76で、他のモデルよりも優れていた。
- 参考スコア(独自算出の注目度): 1.6904475483445451
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We draw insights from the social psychology literature to identify two facets
of Twitter deliberations about migrants, i.e., perceptions about migrants and
behaviors towards mi-grants. Our theoretical anchoring helped us in identifying
two prevailing perceptions (i.e., sympathy and antipathy) and two dominant
behaviors (i.e., solidarity and animosity) of social media users towards
migrants. We have employed unsuper-vised and supervised approaches to identify
these perceptions and behaviors. In the domain of applied NLP, our study
of-fers a nuanced understanding of migrant-related Twitter de-liberations. Our
proposed transformer-based model, i.e., BERT + CNN, has reported an F1-score of
0.76 and outper-formed other models. Additionally, we argue that tweets
con-veying antipathy or animosity can be broadly considered hate speech towards
migrants, but they are not the same. Thus, our approach has fine-tuned the
binary hate speech detection task by highlighting the granular differences
between perceptual and behavioral aspects of hate speeches.
- Abstract(参考訳): 我々は、社会心理学の文献から、移民に関するtwitterの議論、すなわち移民に関する認識と移民に対する行動の2つの側面を識別する洞察を引き出す。
我々の理論的アンカーは、ソーシャルメディア利用者の移民に対する2つの一般的な認識(共感と反感)と2つの支配的な行動(連帯と敵意)を特定するのに役立った。
我々は、これらの知覚と行動を特定するために、スーパービジョンと教師なしのアプローチを採用してきた。
応用NLPの分野では、移民関係のTwitter脱リベレーションの微妙な理解を推定する。
提案する変換器ベースモデルであるBERT + CNNは、F1スコアが0.76で、他のモデルよりも優れていた。
さらに, 反感や嫌悪感を併発するツイートは, 移民に対するヘイトスピーチと見なすことができるが, 同一ではない。
そこで本研究では,ヘイトスピーチの知覚的側面と行動的側面の微妙な違いを強調することで,ヘイトスピーチ検出タスクを微調整した。
関連論文リスト
- Whose Emotions and Moral Sentiments Do Language Models Reflect? [5.4547979989237225]
言語モデル(LM)は、ある社会集団の視点を他のグループよりも良く表現することが知られている。
両イデオロギー群とLMの相違点が有意である。
特定のイデオロギー的な視点でLMを操った後も、モデルのミスアライメントとリベラルな傾向は持続する。
論文 参考訳(メタデータ) (2024-02-16T22:34:53Z) - Countering Malicious Content Moderation Evasion in Online Social
Networks: Simulation and Detection of Word Camouflage [64.78260098263489]
ツイストとカモフラージュキーワードは、プラットフォームコンテンツモデレーションシステムを回避する最もよく使われるテクニックである。
本稿では,コンテンツ回避の新たな手法をシミュレートし,検出する多言語ツールを開発することにより,悪意ある情報に対する対処に大きく貢献する。
論文 参考訳(メタデータ) (2022-12-27T16:08:49Z) - "Stop Asian Hate!" : Refining Detection of Anti-Asian Hate Speech During
the COVID-19 Pandemic [2.5227595609842206]
新型コロナウイルス(COVID-19)のパンデミックは、アジアでのキセノフォビアと偏見の急増を加速させた。
我々は2つの実験的なアプローチを用いてTwitterのツイートのコーパスを作成して注釈付けし、反アジア人虐待とヘイトスピーチを探索する。
論文 参考訳(メタデータ) (2021-12-04T06:55:19Z) - What goes on inside rumour and non-rumour tweets and their reactions: A
Psycholinguistic Analyses [58.75684238003408]
ソーシャルメディアのテキストの心理言語学的分析は、誤情報を緩和するために意味のある結論を導くのに不可欠である。
本研究は,様々な事象に関する噂の深い心理言語学的分析を行うことによって貢献する。
論文 参考訳(メタデータ) (2021-11-09T07:45:11Z) - MigrationsKB: A Knowledge Base of Public Attitudes towards Migrations
and their Driving Factors [1.6973426830397942]
本研究は、移住に対する大衆の態度を定量化するためのソーシャルメディアプラットフォームの分析である。
移民のホストである欧州諸国では、2013年からJul-2021にかけてのツイートが収集されている。
外部データベースは、移住に対する人々の否定的な態度を引き起こす潜在的な社会的・経済的要因を特定するために使用される。
論文 参考訳(メタデータ) (2021-08-17T12:50:39Z) - News consumption and social media regulations policy [70.31753171707005]
我々は、ニュース消費とコンテンツ規制の間の相互作用を評価するために、反対のモデレーション手法であるTwitterとGabを強制した2つのソーシャルメディアを分析した。
以上の結果から,Twitterが追求するモデレーションの存在は,疑わしいコンテンツを著しく減少させることがわかった。
Gabに対する明確な規制の欠如は、ユーザが両方のタイプのコンテンツを扱う傾向を生じさせ、ディスカウント/エンドレスメントの振る舞いを考慮に入れた疑わしいコンテンツに対してわずかに好みを示す。
論文 参考訳(メタデータ) (2021-06-07T19:26:32Z) - Understanding the Hoarding Behaviors during the COVID-19 Pandemic using
Large Scale Social Media Data [77.34726150561087]
われわれは、2020年3月1日から4月30日まで、米国で4万2000人以上のユニークTwitterユーザーによる嫌がらせと反嫌悪のパターンを分析した。
ホアーディンググループと反ホアーディンググループの両方の女性の比率が、一般のTwitter利用者の比率よりも高いことがわかりました。
LIWCの不安度はTwitterの不安度よりもかなり高い。
論文 参考訳(メタデータ) (2020-10-15T16:02:25Z) - Migration and Refugee Crisis: a Critical Analysis of Online Public
Perception [2.9005223064604078]
移住率と移民に対する恨みのレベルは、近代文明において重要な問題である。
我々は、EU難民危機に関連する大量のツイートの集合の中で、感情と関連する表現の文脈を分析します。
本研究は、移民に対するネガティブ感情の割合が極端に高く、一般ユーザーの間ではネガティブ感情の比率が大きく反映されていることを明らかにした。
論文 参考訳(メタデータ) (2020-07-20T02:04:01Z) - Racism is a Virus: Anti-Asian Hate and Counterspeech in Social Media
during the COVID-19 Crisis [51.39895377836919]
新型コロナウイルスは、アジアのコミュニティをターゲットにしたソーシャルメディア上で人種差別や憎悪を引き起こしている。
我々は、Twitterのレンズを通して、反アジアヘイトスピーチの進化と普及について研究する。
私たちは、14ヶ月にわたる反アジア的憎悪と反音声のデータセットとして最大となるCOVID-HATEを作成します。
論文 参考訳(メタデータ) (2020-05-25T21:58:09Z) - #Coronavirus or #Chinesevirus?!: Understanding the negative sentiment
reflected in Tweets with racist hashtags across the development of COVID-19 [1.0878040851638]
人種差別的なハッシュタグでマークされたツイートに反映される否定的な感情の分析に焦点を当てた。
我々は、新型コロナウイルスの3つの発達段階とともに、ネガティブな感情がどのように変化するかを把握するためのステージベースのアプローチを提案する。
論文 参考訳(メタデータ) (2020-05-17T11:15:50Z) - Echo Chambers on Social Media: A comparative analysis [64.2256216637683]
本研究では,4つのソーシャルメディアプラットフォーム上で100万ユーザが生成した100万個のコンテンツに対して,エコーチャンバーの操作的定義を導入し,大規模な比較分析を行う。
議論の的になっているトピックについてユーザの傾きを推測し、異なる特徴を分析してインタラクションネットワークを再構築する。
我々は、Facebookのようなニュースフィードアルゴリズムを実装するプラットフォームが、エコーチャンバの出現を招きかねないという仮説を支持する。
論文 参考訳(メタデータ) (2020-04-20T20:00:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。